Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
use core::fmt::{Debug, Formatter, Result as FmtResult};
use core::mem::replace;

use {Async, AsyncSink, Poll, Sink, StartSend};

/// Sink that clones incoming items and forwards them to two sinks at the same time.
///
/// Backpressure from any downstream sink propagates up, which means that this sink
/// can only process items as fast as its _slowest_ downstream sink.
pub struct Fanout<A: Sink, B: Sink> {
    left: Downstream<A>,
    right: Downstream<B>
}

impl<A: Sink, B: Sink> Fanout<A, B> {
    /// Consumes this combinator, returning the underlying sinks.
    ///
    /// Note that this may discard intermediate state of this combinator,
    /// so care should be taken to avoid losing resources when this is called.
    pub fn into_inner(self) -> (A, B) {
        (self.left.sink, self.right.sink)
    }
}

impl<A: Sink + Debug, B: Sink + Debug> Debug for Fanout<A, B>
    where A::SinkItem: Debug,
          B::SinkItem: Debug
{
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        f.debug_struct("Fanout")
            .field("left", &self.left)
            .field("right", &self.right)
            .finish()
    }
}

pub fn new<A: Sink, B: Sink>(left: A, right: B) -> Fanout<A, B> {
    Fanout {
        left: Downstream::new(left),
        right: Downstream::new(right)
    }
}

impl<A, B> Sink for Fanout<A, B>
    where A: Sink,
          A::SinkItem: Clone,
          B: Sink<SinkItem=A::SinkItem, SinkError=A::SinkError>
{
    type SinkItem = A::SinkItem;
    type SinkError = A::SinkError;

    fn start_send(
        &mut self, 
        item: Self::SinkItem
    ) -> StartSend<Self::SinkItem, Self::SinkError> {
        // Attempt to complete processing any outstanding requests.
        self.left.keep_flushing()?;
        self.right.keep_flushing()?;
        // Only if both downstream sinks are ready, start sending the next item.
        if self.left.is_ready() && self.right.is_ready() {
            self.left.state = self.left.sink.start_send(item.clone())?;
            self.right.state = self.right.sink.start_send(item)?;
            Ok(AsyncSink::Ready)
        } else {
            Ok(AsyncSink::NotReady(item))
        }
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        let left_async = self.left.poll_complete()?;
        let right_async = self.right.poll_complete()?;
        // Only if both downstream sinks are ready, signal readiness.
        if left_async.is_ready() && right_async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        let left_async = self.left.close()?;
        let right_async = self.right.close()?;
        // Only if both downstream sinks are ready, signal readiness.
        if left_async.is_ready() && right_async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        } 
    }
}

#[derive(Debug)]
struct Downstream<S: Sink> {
    sink: S,
    state: AsyncSink<S::SinkItem>
}

impl<S: Sink> Downstream<S> {
    fn new(sink: S) -> Self {
        Downstream { sink: sink, state: AsyncSink::Ready }
    }

    fn is_ready(&self) -> bool {
        self.state.is_ready()
    }

    fn keep_flushing(&mut self) -> Result<(), S::SinkError> {
        if let AsyncSink::NotReady(item) = replace(&mut self.state, AsyncSink::Ready) {
            self.state = self.sink.start_send(item)?;
        }
        Ok(())
    }

    fn poll_complete(&mut self) -> Poll<(), S::SinkError> {
        self.keep_flushing()?;
        let async = self.sink.poll_complete()?;
        // Only if all values have been sent _and_ the underlying
        // sink is completely flushed, signal readiness.
        if self.state.is_ready() && async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn close(&mut self) -> Poll<(), S::SinkError> {
        self.keep_flushing()?;
        // If all items have been flushed, initiate close.
        if self.state.is_ready() {
            self.sink.close()
        } else {
            Ok(Async::NotReady)
        }
    }
}