Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use std::cmp::{Eq, PartialEq, PartialOrd, Ord, Ordering};
use std::collections::BinaryHeap;
use std::fmt::{self, Debug};
use std::iter::FromIterator;

use {Async, Future, IntoFuture, Poll, Stream};
use stream::FuturesUnordered;

#[derive(Debug)]
struct OrderWrapper<T> {
    item: T,
    index: usize,
}

impl<T> PartialEq for OrderWrapper<T> {
    fn eq(&self, other: &Self) -> bool {
        self.index == other.index
    }
}

impl<T> Eq for OrderWrapper<T> {}

impl<T> PartialOrd for OrderWrapper<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T> Ord for OrderWrapper<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        // BinaryHeap is a max heap, so compare backwards here.
        other.index.cmp(&self.index)
    }
}

impl<T> Future for OrderWrapper<T>
    where T: Future
{
    type Item = OrderWrapper<T::Item>;
    type Error = T::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let result = try_ready!(self.item.poll());
        Ok(Async::Ready(OrderWrapper {
            item: result,
            index: self.index
        }))
    }
}

/// An unbounded queue of futures.
///
/// This "combinator" is similar to `FuturesUnordered`, but it imposes an order
/// on top of the set of futures. While futures in the set will race to
/// completion in parallel, results will only be returned in the order their
/// originating futures were added to the queue.
///
/// Futures are pushed into this queue and their realized values are yielded in
/// order. This structure is optimized to manage a large number of futures.
/// Futures managed by `FuturesOrdered` will only be polled when they generate
/// notifications. This reduces the required amount of work needed to coordinate
/// large numbers of futures.
///
/// When a `FuturesOrdered` is first created, it does not contain any futures.
/// Calling `poll` in this state will result in `Ok(Async::Ready(None))` to be
/// returned. Futures are submitted to the queue using `push`; however, the
/// future will **not** be polled at this point. `FuturesOrdered` will only
/// poll managed futures when `FuturesOrdered::poll` is called. As such, it
/// is important to call `poll` after pushing new futures.
///
/// If `FuturesOrdered::poll` returns `Ok(Async::Ready(None))` this means that
/// the queue is currently not managing any futures. A future may be submitted
/// to the queue at a later time. At that point, a call to
/// `FuturesOrdered::poll` will either return the future's resolved value
/// **or** `Ok(Async::NotReady)` if the future has not yet completed. When
/// multiple futures are submitted to the queue, `FuturesOrdered::poll` will
/// return `Ok(Async::NotReady)` until the first future completes, even if
/// some of the later futures have already completed.
///
/// Note that you can create a ready-made `FuturesOrdered` via the
/// `futures_ordered` function in the `stream` module, or you can start with an
/// empty queue with the `FuturesOrdered::new` constructor.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesOrdered<T>
    where T: Future
{
    in_progress: FuturesUnordered<OrderWrapper<T>>,
    queued_results: BinaryHeap<OrderWrapper<T::Item>>,
    next_incoming_index: usize,
    next_outgoing_index: usize,
}

/// Converts a list of futures into a `Stream` of results from the futures.
///
/// This function will take an list of futures (e.g. a vector, an iterator,
/// etc), and return a stream. The stream will yield items as they become
/// available on the futures internally, in the order that their originating
/// futures were submitted to the queue. If the futures complete out of order,
/// items will be stored internally within `FuturesOrdered` until all preceding
/// items have been yielded.
///
/// Note that the returned queue can also be used to dynamically push more
/// futures into the queue as they become available.
pub fn futures_ordered<I>(futures: I) -> FuturesOrdered<<I::Item as IntoFuture>::Future>
    where I: IntoIterator,
          I::Item: IntoFuture
{
    let mut queue = FuturesOrdered::new();

    for future in futures {
        queue.push(future.into_future());
    }

    return queue
}

impl<T> Default for FuturesOrdered<T> where T: Future {
    fn default() -> Self {
        FuturesOrdered::new()
    }
}

impl<T> FuturesOrdered<T>
    where T: Future
{
    /// Constructs a new, empty `FuturesOrdered`
    ///
    /// The returned `FuturesOrdered` does not contain any futures and, in this
    /// state, `FuturesOrdered::poll` will return `Ok(Async::Ready(None))`.
    pub fn new() -> FuturesOrdered<T> {
        FuturesOrdered {
            in_progress: FuturesUnordered::new(),
            queued_results: BinaryHeap::new(),
            next_incoming_index: 0,
            next_outgoing_index: 0,
        }
    }

    /// Returns the number of futures contained in the queue.
    ///
    /// This represents the total number of in-flight futures, both
    /// those currently processing and those that have completed but
    /// which are waiting for earlier futures to complete.
    pub fn len(&self) -> usize {
        self.in_progress.len() + self.queued_results.len()
    }

    /// Returns `true` if the queue contains no futures
    pub fn is_empty(&self) -> bool {
        self.in_progress.is_empty() && self.queued_results.is_empty()
    }

    /// Push a future into the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrdered::poll` is called in order to receive
    /// task notifications.
    pub fn push(&mut self, future: T) {
        let wrapped = OrderWrapper {
            item: future,
            index: self.next_incoming_index,
        };
        self.next_incoming_index += 1;
        self.in_progress.push(wrapped);
    }
}

impl<T> Stream for FuturesOrdered<T>
    where T: Future
{
    type Item = T::Item;
    type Error = T::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        // Get any completed futures from the unordered set.
        loop {
            match self.in_progress.poll()? {
                Async::Ready(Some(result)) => self.queued_results.push(result),
                Async::Ready(None) | Async::NotReady => break,
            }
        }

        if let Some(next_result) = self.queued_results.peek() {
            // PeekMut::pop is not stable yet QQ
            if next_result.index != self.next_outgoing_index {
                return Ok(Async::NotReady);
            }
        } else if !self.in_progress.is_empty() {
            return Ok(Async::NotReady);
        } else {
            return Ok(Async::Ready(None));
        }

        let next_result = self.queued_results.pop().unwrap();
        self.next_outgoing_index += 1;
        Ok(Async::Ready(Some(next_result.item)))
    }
}

impl<T: Debug> Debug for FuturesOrdered<T>
    where T: Future
{
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "FuturesOrdered {{ ... }}")
    }
}

impl<F: Future> FromIterator<F> for FuturesOrdered<F> {
    fn from_iter<T>(iter: T) -> Self 
        where T: IntoIterator<Item = F>
    {
        let mut new = FuturesOrdered::new();
        for future in iter.into_iter() {
            new.push(future);
        }
        new
    }
}