1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
use Rng;
use distributions::{Distribution, Cauchy};
use distributions::utils::log_gamma;
#[derive(Clone, Copy, Debug)]
pub struct Poisson {
lambda: f64,
exp_lambda: f64,
log_lambda: f64,
sqrt_2lambda: f64,
magic_val: f64,
}
impl Poisson {
pub fn new(lambda: f64) -> Poisson {
assert!(lambda > 0.0, "Poisson::new called with lambda <= 0");
let log_lambda = lambda.ln();
Poisson {
lambda,
exp_lambda: (-lambda).exp(),
log_lambda,
sqrt_2lambda: (2.0 * lambda).sqrt(),
magic_val: lambda * log_lambda - log_gamma(1.0 + lambda),
}
}
}
impl Distribution<u64> for Poisson {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
if self.lambda < 12.0 {
let mut result = 0;
let mut p = 1.0;
while p > self.exp_lambda {
p *= rng.gen::<f64>();
result += 1;
}
result - 1
}
else {
let mut int_result: u64;
let cauchy = Cauchy::new(0.0, 1.0);
loop {
let mut result;
let mut comp_dev;
loop {
comp_dev = rng.sample(cauchy);
result = self.sqrt_2lambda * comp_dev + self.lambda;
if result >= 0.0 {
break;
}
}
result = result.floor();
int_result = result as u64;
let check = 0.9 * (1.0 + comp_dev * comp_dev)
* (result * self.log_lambda - log_gamma(1.0 + result) - self.magic_val).exp();
if rng.gen::<f64>() <= check {
break;
}
}
int_result
}
}
}
#[cfg(test)]
mod test {
use distributions::Distribution;
use super::Poisson;
#[test]
fn test_poisson_10() {
let poisson = Poisson::new(10.0);
let mut rng = ::test::rng(123);
let mut sum = 0;
for _ in 0..1000 {
sum += poisson.sample(&mut rng);
}
let avg = (sum as f64) / 1000.0;
println!("Poisson average: {}", avg);
assert!((avg - 10.0).abs() < 0.5);
}
#[test]
fn test_poisson_15() {
let poisson = Poisson::new(15.0);
let mut rng = ::test::rng(123);
let mut sum = 0;
for _ in 0..1000 {
sum += poisson.sample(&mut rng);
}
let avg = (sum as f64) / 1000.0;
println!("Poisson average: {}", avg);
assert!((avg - 15.0).abs() < 0.5);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0);
}
}