1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
const MULTIPLIER: u128 = 0x2360_ED05_1FC6_5DA4_4385_DF64_9FCC_F645;
use core::fmt;
use core::mem::transmute;
use rand_core::{RngCore, SeedableRng, Error, le};
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))]
pub struct Mcg128Xsl64 {
state: u128,
}
pub type Pcg64Mcg = Mcg128Xsl64;
impl Mcg128Xsl64 {
pub fn new(state: u128) -> Self {
Mcg128Xsl64 { state: state | 1 }
}
}
impl fmt::Debug for Mcg128Xsl64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Mcg128Xsl64 {{}}")
}
}
impl SeedableRng for Mcg128Xsl64 {
type Seed = [u8; 16];
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u64 = [0u64; 2];
le::read_u64_into(&seed, &mut seed_u64);
let state = (seed_u64[0] as u128) |
(seed_u64[1] as u128) << 64;
Mcg128Xsl64::new(state)
}
}
impl RngCore for Mcg128Xsl64 {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
let state = self.state.wrapping_mul(MULTIPLIER);
self.state = state;
const XSHIFT: u32 = 64;
const ROTATE: u32 = 122;
let rot = (state >> ROTATE) as u32;
let xsl = ((state >> XSHIFT) as u64) ^ (state as u64);
xsl.rotate_right(rot)
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
let mut left = dest;
while left.len() >= 8 {
let (l, r) = {left}.split_at_mut(8);
left = r;
let chunk: [u8; 8] = unsafe {
transmute(self.next_u64().to_le())
};
l.copy_from_slice(&chunk);
}
let n = left.len();
if n > 0 {
let chunk: [u8; 8] = unsafe {
transmute(self.next_u64().to_le())
};
left.copy_from_slice(&chunk[..n]);
}
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
Ok(self.fill_bytes(dest))
}
}