1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use super::chan;

use futures::{Poll, Sink, StartSend, Stream};

use std::fmt;

/// Send values to the associated `Receiver`.
///
/// Instances are created by the [`channel`](fn.channel.html) function.
pub struct Sender<T> {
    chan: chan::Tx<T, Semaphore>,
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Self {
        Sender {
            chan: self.chan.clone(),
        }
    }
}

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Sender")
            .field("chan", &self.chan)
            .finish()
    }
}

/// Receive values from the associated `Sender`.
///
/// Instances are created by the [`channel`](fn.channel.html) function.
pub struct Receiver<T> {
    /// The channel receiver
    chan: chan::Rx<T, Semaphore>,
}

impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Receiver")
            .field("chan", &self.chan)
            .finish()
    }
}

/// Error returned by the `Sender`.
#[derive(Debug)]
pub struct SendError(());

/// Error returned by `Sender::try_send`.
#[derive(Debug)]
pub struct TrySendError<T> {
    kind: ErrorKind,
    value: T,
}

#[derive(Debug)]
enum ErrorKind {
    Closed,
    NoCapacity,
}

/// Error returned by `Receiver`.
#[derive(Debug)]
pub struct RecvError(());

/// Create a bounded mpsc channel for communicating between asynchronous tasks,
/// returning the sender/receiver halves.
///
/// All data sent on `Sender` will become available on `Receiver` in the same
/// order as it was sent.
///
/// The `Sender` can be cloned to `send` to the same channel from multiple code
/// locations. Only one `Receiver` is supported.
///
/// If the `Receiver` is disconnected while trying to `send`, the `send` method
/// will return a `SendError`. Similarly, if `Sender` is disconnected while
/// trying to `recv`, the `recv` method will return a `RecvError`.
///
/// # Examples
///
/// ```rust
/// extern crate futures;
/// extern crate tokio;
///
/// use tokio::sync::mpsc::channel;
/// use tokio::prelude::*;
/// use futures::future::lazy;
///
/// # fn some_computation() -> impl Future<Item = (), Error = ()> + Send {
/// # futures::future::ok::<(), ()>(())
/// # }
///
/// tokio::run(lazy(|| {
///     let (tx, rx) = channel(100);
///
///     tokio::spawn({
///         some_computation()
///             .and_then(|value| {
///                 tx.send(value)
///                     .map_err(|_| ())
///             })
///             .map(|_| ())
///             .map_err(|_| ())
///     });
///
///     rx.for_each(|value| {
///         println!("got value = {:?}", value);
///         Ok(())
///     })
///     .map(|_| ())
///     .map_err(|_| ())
/// }));
/// ```
pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) {
    assert!(buffer > 0, "mpsc bounded channel requires buffer > 0");
    let semaphore = (::semaphore::Semaphore::new(buffer), buffer);
    let (tx, rx) = chan::channel(semaphore);

    let tx = Sender::new(tx);
    let rx = Receiver::new(rx);

    (tx, rx)
}

/// Channel semaphore is a tuple of the semaphore implementation and a `usize`
/// representing the channel bound.
type Semaphore = (::semaphore::Semaphore, usize);

impl<T> Receiver<T> {
    pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> Receiver<T> {
        Receiver { chan }
    }

    /// Closes the receiving half of a channel, without dropping it.
    ///
    /// This prevents any further messages from being sent on the channel while
    /// still enabling the receiver to drain messages that are buffered.
    pub fn close(&mut self) {
        self.chan.close();
    }
}

impl<T> Stream for Receiver<T> {
    type Item = T;
    type Error = RecvError;

    fn poll(&mut self) -> Poll<Option<T>, Self::Error> {
        self.chan.recv().map_err(|_| RecvError(()))
    }
}

impl<T> Sender<T> {
    pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> Sender<T> {
        Sender { chan }
    }

    /// Check if the `Sender` is ready to handle a value.
    ///
    /// Polls the channel to determine if there is guaranteed capacity to send
    /// at least one item without waiting.
    ///
    /// When `poll_ready` returns `Ready`, the channel reserves capacity for one
    /// message for this `Sender` instance. The capacity is held until a message
    /// is send or the `Sender` instance is dropped. Callers should ensure a
    /// message is sent in a timely fashion in order to not starve other
    /// `Sender` instances.
    ///
    /// # Return value
    ///
    /// This method returns:
    ///
    /// - `Ok(Async::Ready(_))` if capacity is reserved for a single message.
    /// - `Ok(Async::NotReady)` if the channel may not have capacity, in which
    ///   case the current task is queued to be notified once
    ///   capacity is available;
    /// - `Err(SendError)` if the receiver has been dropped.
    pub fn poll_ready(&mut self) -> Poll<(), SendError> {
        self.chan.poll_ready().map_err(|_| SendError(()))
    }

    /// Attempts to send a message on this `Sender`, returning the message
    /// if there was an error.
    pub fn try_send(&mut self, message: T) -> Result<(), TrySendError<T>> {
        self.chan.try_send(message)?;
        Ok(())
    }
}

impl<T> Sink for Sender<T> {
    type SinkItem = T;
    type SinkError = SendError;

    fn start_send(&mut self, msg: T) -> StartSend<T, Self::SinkError> {
        use futures::Async::*;
        use futures::AsyncSink;

        match self.poll_ready()? {
            Ready(_) => {
                self.try_send(msg).map_err(|_| SendError(()))?;
                Ok(AsyncSink::Ready)
            }
            NotReady => Ok(AsyncSink::NotReady(msg)),
        }
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        use futures::Async::Ready;
        Ok(Ready(()))
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        use futures::Async::Ready;
        Ok(Ready(()))
    }
}

// ===== impl SendError =====

impl fmt::Display for SendError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        use std::error::Error;
        write!(fmt, "{}", self.description())
    }
}

impl ::std::error::Error for SendError {
    fn description(&self) -> &str {
        "channel closed"
    }
}

// ===== impl TrySendError =====

impl<T> TrySendError<T> {
    /// Get the inner value.
    pub fn into_inner(self) -> T {
        self.value
    }

    /// Did the send fail because the channel has been closed?
    pub fn is_closed(&self) -> bool {
        if let ErrorKind::Closed = self.kind {
            true
        } else {
            false
        }
    }

    /// Did the send fail because the channel was at capacity?
    pub fn is_full(&self) -> bool {
        if let ErrorKind::NoCapacity = self.kind {
            true
        } else {
            false
        }
    }
}

impl<T: fmt::Debug> fmt::Display for TrySendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        use std::error::Error;
        write!(fmt, "{}", self.description())
    }
}

impl<T: fmt::Debug> ::std::error::Error for TrySendError<T> {
    fn description(&self) -> &str {
        match self.kind {
            ErrorKind::Closed => "channel closed",
            ErrorKind::NoCapacity => "no available capacity",
        }
    }
}

impl<T> From<(T, chan::TrySendError)> for TrySendError<T> {
    fn from((value, err): (T, chan::TrySendError)) -> TrySendError<T> {
        TrySendError {
            value,
            kind: match err {
                chan::TrySendError::Closed => ErrorKind::Closed,
                chan::TrySendError::NoPermits => ErrorKind::NoCapacity,
            },
        }
    }
}

// ===== impl RecvError =====

impl fmt::Display for RecvError {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        use std::error::Error;
        write!(fmt, "{}", self.description())
    }
}

impl ::std::error::Error for RecvError {
    fn description(&self) -> &str {
        "channel closed"
    }
}