1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
use std::fmt; use std::io::{self, Read, Write}; use std::mem; use std::net::{self, SocketAddr, Shutdown}; use std::time::Duration; use bytes::{Buf, BufMut}; use futures::{Future, Poll, Async}; use iovec::IoVec; use mio; use tokio_io::{AsyncRead, AsyncWrite}; use tokio_reactor::{Handle, PollEvented}; /// An I/O object representing a TCP stream connected to a remote endpoint. /// /// A TCP stream can either be created by connecting to an endpoint, via the /// [`connect`] method, or by [accepting] a connection from a [listener]. /// /// [`connect`]: struct.TcpStream.html#method.connect /// [accepting]: struct.TcpListener.html#method.accept /// [listener]: struct.TcpListener.html /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use futures::Future; /// use tokio::io::AsyncWrite; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:34254".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|mut stream| { /// // Attempt to write bytes asynchronously to the stream /// stream.poll_write(&[1]); /// }); /// # Ok(()) /// # } /// ``` pub struct TcpStream { io: PollEvented<mio::net::TcpStream>, } /// Future returned by `TcpStream::connect` which will resolve to a `TcpStream` /// when the stream is connected. #[must_use = "futures do nothing unless polled"] #[derive(Debug)] pub struct ConnectFuture { inner: ConnectFutureState, } #[must_use = "futures do nothing unless polled"] #[derive(Debug)] enum ConnectFutureState { Waiting(TcpStream), Error(io::Error), Empty, } impl TcpStream { /// Create a new TCP stream connected to the specified address. /// /// This function will create a new TCP socket and attempt to connect it to /// the `addr` provided. The returned future will be resolved once the /// stream has successfully connected, or it will return an error if one /// occurs. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use futures::Future; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:34254".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr) /// .map(|stream| /// println!("successfully connected to {}", stream.local_addr().unwrap())); /// # Ok(()) /// # } /// ``` pub fn connect(addr: &SocketAddr) -> ConnectFuture { use self::ConnectFutureState::*; let inner = match mio::net::TcpStream::connect(addr) { Ok(tcp) => Waiting(TcpStream::new(tcp)), Err(e) => Error(e), }; ConnectFuture { inner } } pub(crate) fn new(connected: mio::net::TcpStream) -> TcpStream { let io = PollEvented::new(connected); TcpStream { io } } /// Create a new `TcpStream` from a `net::TcpStream`. /// /// This function will convert a TCP stream created by the standard library /// to a TCP stream ready to be used with the provided event loop handle. /// Use `Handle::default()` to lazily bind to an event loop, just like `connect` does. /// /// # Examples /// /// ```no_run /// # extern crate tokio; /// # extern crate tokio_reactor; /// use tokio::net::TcpStream; /// use std::net::TcpStream as StdTcpStream; /// use tokio_reactor::Handle; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let std_stream = StdTcpStream::connect("127.0.0.1:34254")?; /// let stream = TcpStream::from_std(std_stream, &Handle::default())?; /// # Ok(()) /// # } /// ``` pub fn from_std(stream: net::TcpStream, handle: &Handle) -> io::Result<TcpStream> { let io = mio::net::TcpStream::from_stream(stream)?; let io = PollEvented::new_with_handle(io, handle)?; Ok(TcpStream { io }) } /// Creates a new `TcpStream` from the pending socket inside the given /// `std::net::TcpStream`, connecting it to the address specified. /// /// This constructor allows configuring the socket before it's actually /// connected, and this function will transfer ownership to the returned /// `TcpStream` if successful. An unconnected `TcpStream` can be created /// with the `net2::TcpBuilder` type (and also configured via that route). /// /// The platform specific behavior of this function looks like: /// /// * On Unix, the socket is placed into nonblocking mode and then a /// `connect` call is issued. /// /// * On Windows, the address is stored internally and the connect operation /// is issued when the returned `TcpStream` is registered with an event /// loop. Note that on Windows you must `bind` a socket before it can be /// connected, so if a custom `TcpBuilder` is used it should be bound /// (perhaps to `INADDR_ANY`) before this method is called. pub fn connect_std(stream: net::TcpStream, addr: &SocketAddr, handle: &Handle) -> ConnectFuture { use self::ConnectFutureState::*; let io = mio::net::TcpStream::connect_stream(stream, addr) .and_then(|io| PollEvented::new_with_handle(io, handle)); let inner = match io { Ok(io) => Waiting(TcpStream { io }), Err(e) => Error(e), }; ConnectFuture { inner: inner } } /// Check the TCP stream's read readiness state. /// /// The mask argument allows specifying what readiness to notify on. This /// can be any value, including platform specific readiness, **except** /// `writable`. HUP is always implicitly included on platforms that support /// it. /// /// If the resource is not ready for a read then `Async::NotReady` is /// returned and the current task is notified once a new event is received. /// /// The stream will remain in a read-ready state until calls to `poll_read` /// return `NotReady`. /// /// # Panics /// /// This function panics if: /// /// * `ready` includes writable. /// * called from outside of a task context. /// /// # Examples /// /// ``` /// # extern crate mio; /// # extern crate tokio; /// # extern crate futures; /// use mio::Ready; /// use futures::Async; /// use futures::Future; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:34254".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// match stream.poll_read_ready(Ready::readable()) { /// Ok(Async::Ready(_)) => println!("read ready"), /// Ok(Async::NotReady) => println!("not read ready"), /// Err(e) => eprintln!("got error: {}", e), /// } /// }); /// # Ok(()) /// # } /// ``` pub fn poll_read_ready(&self, mask: mio::Ready) -> Poll<mio::Ready, io::Error> { self.io.poll_read_ready(mask) } /// Check the TCP stream's write readiness state. /// /// This always checks for writable readiness and also checks for HUP /// readiness on platforms that support it. /// /// If the resource is not ready for a write then `Async::NotReady` is /// returned and the current task is notified once a new event is received. /// /// The I/O resource will remain in a write-ready state until calls to /// `poll_write` return `NotReady`. /// /// # Panics /// /// This function panics if called from outside of a task context. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use futures::Async; /// use futures::Future; /// use tokio::net::TcpStream; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:34254".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// match stream.poll_write_ready() { /// Ok(Async::Ready(_)) => println!("write ready"), /// Ok(Async::NotReady) => println!("not write ready"), /// Err(e) => eprintln!("got error: {}", e), /// } /// }); /// # Ok(()) /// # } /// ``` pub fn poll_write_ready(&self) -> Poll<mio::Ready, io::Error> { self.io.poll_write_ready() } /// Returns the local address that this stream is bound to. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4}; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// assert_eq!(stream.local_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))); /// }); /// # Ok(()) /// # } /// ``` pub fn local_addr(&self) -> io::Result<SocketAddr> { self.io.get_ref().local_addr() } /// Returns the remote address that this stream is connected to. /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4}; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// assert_eq!(stream.peer_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))); /// }); /// # Ok(()) /// # } /// ``` pub fn peer_addr(&self) -> io::Result<SocketAddr> { self.io.get_ref().peer_addr() } #[deprecated(since = "0.1.2", note = "use poll_peek instead")] #[doc(hidden)] pub fn peek(&mut self, buf: &mut [u8]) -> io::Result<usize> { match self.poll_peek(buf)? { Async::Ready(n) => Ok(n), Async::NotReady => Err(io::ErrorKind::WouldBlock.into()), } } /// Receives data on the socket from the remote address to which it is /// connected, without removing that data from the queue. On success, /// returns the number of bytes peeked. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying recv system call. /// /// # Return /// /// On success, returns `Ok(Async::Ready(num_bytes_read))`. /// /// If no data is available for reading, the method returns /// `Ok(Async::NotReady)` and arranges for the current task to receive a /// notification when the socket becomes readable or is closed. /// /// # Panics /// /// This function will panic if called from outside of a task context. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Async; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|mut stream| { /// let mut buf = [0; 10]; /// match stream.poll_peek(&mut buf) { /// Ok(Async::Ready(len)) => println!("read {} bytes", len), /// Ok(Async::NotReady) => println!("no data available"), /// Err(e) => eprintln!("got error: {}", e), /// } /// }); /// # Ok(()) /// # } /// ``` pub fn poll_peek(&mut self, buf: &mut [u8]) -> Poll<usize, io::Error> { try_ready!(self.io.poll_read_ready(mio::Ready::readable())); match self.io.get_ref().peek(buf) { Ok(ret) => Ok(ret.into()), Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_read_ready(mio::Ready::readable())?; Ok(Async::NotReady) } Err(e) => Err(e), } } /// Shuts down the read, write, or both halves of this connection. /// /// This function will cause all pending and future I/O on the specified /// portions to return immediately with an appropriate value (see the /// documentation of `Shutdown`). /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::{Shutdown, SocketAddr}; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.shutdown(Shutdown::Both) /// }); /// # Ok(()) /// # } /// ``` pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { self.io.get_ref().shutdown(how) } /// Gets the value of the `TCP_NODELAY` option on this socket. /// /// For more information about this option, see [`set_nodelay`]. /// /// [`set_nodelay`]: #method.set_nodelay /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_nodelay(true).expect("set_nodelay call failed");; /// assert_eq!(stream.nodelay().unwrap_or(false), true); /// }); /// # Ok(()) /// # } /// ``` pub fn nodelay(&self) -> io::Result<bool> { self.io.get_ref().nodelay() } /// Sets the value of the `TCP_NODELAY` option on this socket. /// /// If set, this option disables the Nagle algorithm. This means that /// segments are always sent as soon as possible, even if there is only a /// small amount of data. When not set, data is buffered until there is a /// sufficient amount to send out, thereby avoiding the frequent sending of /// small packets. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_nodelay(true).expect("set_nodelay call failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.io.get_ref().set_nodelay(nodelay) } /// Gets the value of the `SO_RCVBUF` option on this socket. /// /// For more information about this option, see [`set_recv_buffer_size`]. /// /// [`set_recv_buffer_size`]: #tymethod.set_recv_buffer_size /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_recv_buffer_size(100).expect("set_recv_buffer_size failed"); /// assert_eq!(stream.recv_buffer_size().unwrap_or(0), 100); /// }); /// # Ok(()) /// # } /// ``` pub fn recv_buffer_size(&self) -> io::Result<usize> { self.io.get_ref().recv_buffer_size() } /// Sets the value of the `SO_RCVBUF` option on this socket. /// /// Changes the size of the operating system's receive buffer associated /// with the socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_recv_buffer_size(100).expect("set_recv_buffer_size failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> { self.io.get_ref().set_recv_buffer_size(size) } /// Gets the value of the `SO_SNDBUF` option on this socket. /// /// For more information about this option, see [`set_send_buffer`]. /// /// [`set_send_buffer`]: #tymethod.set_send_buffer /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_send_buffer_size(100).expect("set_send_buffer_size failed"); /// assert_eq!(stream.send_buffer_size().unwrap_or(0), 100); /// }); /// # Ok(()) /// # } /// ``` pub fn send_buffer_size(&self) -> io::Result<usize> { self.io.get_ref().send_buffer_size() } /// Sets the value of the `SO_SNDBUF` option on this socket. /// /// Changes the size of the operating system's send buffer associated with /// the socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_send_buffer_size(100).expect("set_send_buffer_size failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> { self.io.get_ref().set_send_buffer_size(size) } /// Returns whether keepalive messages are enabled on this socket, and if so /// the duration of time between them. /// /// For more information about this option, see [`set_keepalive`]. /// /// [`set_keepalive`]: #tymethod.set_keepalive /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_keepalive(None).expect("set_keepalive failed"); /// assert_eq!(stream.keepalive().unwrap(), None); /// }); /// # Ok(()) /// # } /// ``` pub fn keepalive(&self) -> io::Result<Option<Duration>> { self.io.get_ref().keepalive() } /// Sets whether keepalive messages are enabled to be sent on this socket. /// /// On Unix, this option will set the `SO_KEEPALIVE` as well as the /// `TCP_KEEPALIVE` or `TCP_KEEPIDLE` option (depending on your platform). /// On Windows, this will set the `SIO_KEEPALIVE_VALS` option. /// /// If `None` is specified then keepalive messages are disabled, otherwise /// the duration specified will be the time to remain idle before sending a /// TCP keepalive probe. /// /// Some platforms specify this value in seconds, so sub-second /// specifications may be omitted. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_keepalive(None).expect("set_keepalive failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_keepalive(&self, keepalive: Option<Duration>) -> io::Result<()> { self.io.get_ref().set_keepalive(keepalive) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`]. /// /// [`set_ttl`]: #tymethod.set_ttl /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_ttl(100).expect("set_ttl failed"); /// assert_eq!(stream.ttl().unwrap_or(0), 100); /// }); /// # Ok(()) /// # } /// ``` pub fn ttl(&self) -> io::Result<u32> { self.io.get_ref().ttl() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_ttl(100).expect("set_ttl failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_ttl(ttl) } /// Reads the linger duration for this socket by getting the `SO_LINGER` /// option. /// /// For more information about this option, see [`set_linger`]. /// /// [`set_linger`]: #tymethod.set_linger /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_linger(None).expect("set_linger failed"); /// assert_eq!(stream.linger().unwrap(), None); /// }); /// # Ok(()) /// # } /// ``` pub fn linger(&self) -> io::Result<Option<Duration>> { self.io.get_ref().linger() } /// Sets the linger duration of this socket by setting the `SO_LINGER` /// option. /// /// This option controls the action taken when a stream has unsent messages /// and the stream is closed. If `SO_LINGER` is set, the system /// shall block the process until it can transmit the data or until the /// time expires. /// /// If `SO_LINGER` is not specified, and the stream is closed, the system /// handles the call in a way that allows the process to continue as quickly /// as possible. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// stream.set_linger(None).expect("set_linger failed"); /// }); /// # Ok(()) /// # } /// ``` pub fn set_linger(&self, dur: Option<Duration>) -> io::Result<()> { self.io.get_ref().set_linger(dur) } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `TcpStream` is a reference to the same stream that this /// object references. Both handles will read and write the same stream of /// data, and options set on one stream will be propagated to the other /// stream. /// /// # Examples /// /// ``` /// # extern crate tokio; /// # extern crate futures; /// use tokio::net::TcpStream; /// use futures::Future; /// use std::net::SocketAddr; /// /// # fn main() -> Result<(), Box<std::error::Error>> { /// let addr = "127.0.0.1:8080".parse::<SocketAddr>()?; /// let stream = TcpStream::connect(&addr); /// stream.map(|stream| { /// let clone = stream.try_clone().unwrap(); /// }); /// # Ok(()) /// # } /// ``` #[deprecated(since = "0.1.14", note = "use `split()` instead")] #[doc(hidden)] pub fn try_clone(&self) -> io::Result<TcpStream> { // Rationale for deprecation: // - https://github.com/tokio-rs/tokio/pull/824 // - https://github.com/tokio-rs/tokio/issues/774#issuecomment-451059317 let msg = "`TcpStream::split()` is deprecated because it doesn't work as intended"; Err(io::Error::new(io::ErrorKind::Other, msg)) } } // ===== impl Read / Write ===== impl Read for TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.io.read(buf) } } impl Write for TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.io.write(buf) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl AsyncRead for TcpStream { unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool { false } fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> { <&TcpStream>::read_buf(&mut &*self, buf) } } impl AsyncWrite for TcpStream { fn shutdown(&mut self) -> Poll<(), io::Error> { <&TcpStream>::shutdown(&mut &*self) } fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> { <&TcpStream>::write_buf(&mut &*self, buf) } } // ===== impl Read / Write for &'a ===== impl<'a> Read for &'a TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { (&self.io).read(buf) } } impl<'a> Write for &'a TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (&self.io).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.io).flush() } } impl<'a> AsyncRead for &'a TcpStream { unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool { false } fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> { if let Async::NotReady = self.io.poll_read_ready(mio::Ready::readable())? { return Ok(Async::NotReady) } let r = unsafe { // The `IoVec` type can't have a 0-length size, so we create a bunch // of dummy versions on the stack with 1 length which we'll quickly // overwrite. let b1: &mut [u8] = &mut [0]; let b2: &mut [u8] = &mut [0]; let b3: &mut [u8] = &mut [0]; let b4: &mut [u8] = &mut [0]; let b5: &mut [u8] = &mut [0]; let b6: &mut [u8] = &mut [0]; let b7: &mut [u8] = &mut [0]; let b8: &mut [u8] = &mut [0]; let b9: &mut [u8] = &mut [0]; let b10: &mut [u8] = &mut [0]; let b11: &mut [u8] = &mut [0]; let b12: &mut [u8] = &mut [0]; let b13: &mut [u8] = &mut [0]; let b14: &mut [u8] = &mut [0]; let b15: &mut [u8] = &mut [0]; let b16: &mut [u8] = &mut [0]; let mut bufs: [&mut IoVec; 16] = [ b1.into(), b2.into(), b3.into(), b4.into(), b5.into(), b6.into(), b7.into(), b8.into(), b9.into(), b10.into(), b11.into(), b12.into(), b13.into(), b14.into(), b15.into(), b16.into(), ]; let n = buf.bytes_vec_mut(&mut bufs); self.io.get_ref().read_bufs(&mut bufs[..n]) }; match r { Ok(n) => { unsafe { buf.advance_mut(n); } Ok(Async::Ready(n)) } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_read_ready(mio::Ready::readable())?; Ok(Async::NotReady) } Err(e) => Err(e), } } } impl<'a> AsyncWrite for &'a TcpStream { fn shutdown(&mut self) -> Poll<(), io::Error> { Ok(().into()) } fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> { if let Async::NotReady = self.io.poll_write_ready()? { return Ok(Async::NotReady) } let r = { // The `IoVec` type can't have a zero-length size, so create a dummy // version from a 1-length slice which we'll overwrite with the // `bytes_vec` method. static DUMMY: &[u8] = &[0]; let iovec = <&IoVec>::from(DUMMY); let mut bufs = [iovec; 64]; let n = buf.bytes_vec(&mut bufs); self.io.get_ref().write_bufs(&bufs[..n]) }; match r { Ok(n) => { buf.advance(n); Ok(Async::Ready(n)) } Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { self.io.clear_write_ready()?; Ok(Async::NotReady) } Err(e) => Err(e), } } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.io.get_ref().fmt(f) } } impl Future for ConnectFuture { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll<TcpStream, io::Error> { self.inner.poll() } } impl ConnectFutureState { fn poll_inner<F>(&mut self, f: F) -> Poll<TcpStream, io::Error> where F: FnOnce(&mut PollEvented<mio::net::TcpStream>) -> Poll<mio::Ready, io::Error> { { let stream = match *self { ConnectFutureState::Waiting(ref mut s) => s, ConnectFutureState::Error(_) => { let e = match mem::replace(self, ConnectFutureState::Empty) { ConnectFutureState::Error(e) => e, _ => panic!(), }; return Err(e) } ConnectFutureState::Empty => panic!("can't poll TCP stream twice"), }; // Once we've connected, wait for the stream to be writable as // that's when the actual connection has been initiated. Once we're // writable we check for `take_socket_error` to see if the connect // actually hit an error or not. // // If all that succeeded then we ship everything on up. if let Async::NotReady = f(&mut stream.io)? { return Ok(Async::NotReady) } if let Some(e) = try!(stream.io.get_ref().take_error()) { return Err(e) } } match mem::replace(self, ConnectFutureState::Empty) { ConnectFutureState::Waiting(stream) => Ok(Async::Ready(stream)), _ => panic!(), } } } impl Future for ConnectFutureState { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll<TcpStream, io::Error> { self.poll_inner(|io| io.poll_write_ready()) } } #[cfg(unix)] mod sys { use std::os::unix::prelude::*; use super::TcpStream; impl AsRawFd for TcpStream { fn as_raw_fd(&self) -> RawFd { self.io.get_ref().as_raw_fd() } } } #[cfg(windows)] mod sys { // TODO: let's land these upstream with mio and then we can add them here. // // use std::os::windows::prelude::*; // use super::TcpStream; // // impl AsRawHandle for TcpStream { // fn as_raw_handle(&self) -> RawHandle { // self.io.get_ref().as_raw_handle() // } // } }