1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//! PKCS #12 archives.

use ffi;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use std::ffi::CString;
use std::ptr;

use error::ErrorStack;
use nid::Nid;
use pkey::{HasPrivate, PKey, PKeyRef, Private};
use stack::Stack;
use x509::{X509Ref, X509};
use {cvt, cvt_p};

foreign_type_and_impl_send_sync! {
    type CType = ffi::PKCS12;
    fn drop = ffi::PKCS12_free;

    pub struct Pkcs12;
    pub struct Pkcs12Ref;
}

impl Pkcs12Ref {
    to_der! {
        /// Serializes the `Pkcs12` to its standard DER encoding.
        ///
        /// This corresponds to [`i2d_PKCS12`].
        ///
        /// [`i2d_PKCS12`]: https://www.openssl.org/docs/manmaster/man3/i2d_PKCS12.html
        to_der,
        ffi::i2d_PKCS12
    }

    /// Extracts the contents of the `Pkcs12`.
    pub fn parse(&self, pass: &str) -> Result<ParsedPkcs12, ErrorStack> {
        unsafe {
            let pass = CString::new(pass.as_bytes()).unwrap();

            let mut pkey = ptr::null_mut();
            let mut cert = ptr::null_mut();
            let mut chain = ptr::null_mut();

            cvt(ffi::PKCS12_parse(
                self.as_ptr(),
                pass.as_ptr(),
                &mut pkey,
                &mut cert,
                &mut chain,
            ))?;

            let pkey = PKey::from_ptr(pkey);
            let cert = X509::from_ptr(cert);

            let chain = if chain.is_null() {
                None
            } else {
                Some(Stack::from_ptr(chain))
            };

            Ok(ParsedPkcs12 { pkey, cert, chain })
        }
    }
}

impl Pkcs12 {
    from_der! {
        /// Deserializes a DER-encoded PKCS#12 archive.
        ///
        /// This corresponds to [`d2i_PKCS12`].
        ///
        /// [`d2i_PKCS12`]: https://www.openssl.org/docs/man1.1.0/crypto/d2i_PKCS12.html
        from_der,
        Pkcs12,
        ffi::d2i_PKCS12
    }

    /// Creates a new builder for a protected pkcs12 certificate.
    ///
    /// This uses the defaults from the OpenSSL library:
    ///
    /// * `nid_key` - `nid::PBE_WITHSHA1AND3_KEY_TRIPLEDES_CBC`
    /// * `nid_cert` - `nid::PBE_WITHSHA1AND40BITRC2_CBC`
    /// * `iter` - `2048`
    /// * `mac_iter` - `2048`
    pub fn builder() -> Pkcs12Builder {
        ffi::init();

        Pkcs12Builder {
            nid_key: Nid::UNDEF,  //nid::PBE_WITHSHA1AND3_KEY_TRIPLEDES_CBC,
            nid_cert: Nid::UNDEF, //nid::PBE_WITHSHA1AND40BITRC2_CBC,
            iter: ffi::PKCS12_DEFAULT_ITER,
            mac_iter: ffi::PKCS12_DEFAULT_ITER,
            ca: None,
        }
    }
}

pub struct ParsedPkcs12 {
    pub pkey: PKey<Private>,
    pub cert: X509,
    pub chain: Option<Stack<X509>>,
}

pub struct Pkcs12Builder {
    nid_key: Nid,
    nid_cert: Nid,
    iter: c_int,
    mac_iter: c_int,
    ca: Option<Stack<X509>>,
}

impl Pkcs12Builder {
    /// The encryption algorithm that should be used for the key
    pub fn key_algorithm(&mut self, nid: Nid) -> &mut Self {
        self.nid_key = nid;
        self
    }

    /// The encryption algorithm that should be used for the cert
    pub fn cert_algorithm(&mut self, nid: Nid) -> &mut Self {
        self.nid_cert = nid;
        self
    }

    /// Key iteration count, default is 2048 as of this writing
    pub fn key_iter(&mut self, iter: u32) -> &mut Self {
        self.iter = iter as c_int;
        self
    }

    /// MAC iteration count, default is the same as key_iter.
    ///
    /// Old implementations don't understand MAC iterations greater than 1, (pre 1.0.1?), if such
    /// compatibility is required this should be set to 1.
    pub fn mac_iter(&mut self, mac_iter: u32) -> &mut Self {
        self.mac_iter = mac_iter as c_int;
        self
    }

    /// An additional set of certificates to include in the archive beyond the one provided to
    /// `build`.
    pub fn ca(&mut self, ca: Stack<X509>) -> &mut Self {
        self.ca = Some(ca);
        self
    }

    /// Builds the PKCS #12 object
    ///
    /// # Arguments
    ///
    /// * `password` - the password used to encrypt the key and certificate
    /// * `friendly_name` - user defined name for the certificate
    /// * `pkey` - key to store
    /// * `cert` - certificate to store
    pub fn build<T>(
        self,
        password: &str,
        friendly_name: &str,
        pkey: &PKeyRef<T>,
        cert: &X509Ref,
    ) -> Result<Pkcs12, ErrorStack>
    where
        T: HasPrivate,
    {
        unsafe {
            let pass = CString::new(password).unwrap();
            let friendly_name = CString::new(friendly_name).unwrap();
            let pkey = pkey.as_ptr();
            let cert = cert.as_ptr();
            let ca = self
                .ca
                .as_ref()
                .map(|ca| ca.as_ptr())
                .unwrap_or(ptr::null_mut());
            let nid_key = self.nid_key.as_raw();
            let nid_cert = self.nid_cert.as_raw();

            // According to the OpenSSL docs, keytype is a non-standard extension for MSIE,
            // It's values are KEY_SIG or KEY_EX, see the OpenSSL docs for more information:
            // https://www.openssl.org/docs/man1.0.2/crypto/PKCS12_create.html
            let keytype = 0;

            cvt_p(ffi::PKCS12_create(
                pass.as_ptr() as *const _ as *mut _,
                friendly_name.as_ptr() as *const _ as *mut _,
                pkey,
                cert,
                ca,
                nid_key,
                nid_cert,
                self.iter,
                self.mac_iter,
                keytype,
            ))
            .map(Pkcs12)
        }
    }
}

#[cfg(test)]
mod test {
    use hash::MessageDigest;
    use hex;

    use asn1::Asn1Time;
    use nid::Nid;
    use pkey::PKey;
    use rsa::Rsa;
    use x509::extension::KeyUsage;
    use x509::{X509Name, X509};

    use super::*;

    #[test]
    fn parse() {
        let der = include_bytes!("../test/identity.p12");
        let pkcs12 = Pkcs12::from_der(der).unwrap();
        let parsed = pkcs12.parse("mypass").unwrap();

        assert_eq!(
            hex::encode(parsed.cert.digest(MessageDigest::sha1()).unwrap()),
            "59172d9313e84459bcff27f967e79e6e9217e584"
        );

        let chain = parsed.chain.unwrap();
        assert_eq!(chain.len(), 1);
        assert_eq!(
            hex::encode(chain[0].digest(MessageDigest::sha1()).unwrap()),
            "c0cbdf7cdd03c9773e5468e1f6d2da7d5cbb1875"
        );
    }

    #[test]
    fn parse_empty_chain() {
        let der = include_bytes!("../test/keystore-empty-chain.p12");
        let pkcs12 = Pkcs12::from_der(der).unwrap();
        let parsed = pkcs12.parse("cassandra").unwrap();
        assert!(parsed.chain.is_none());
    }

    #[test]
    fn create() {
        let subject_name = "ns.example.com";
        let rsa = Rsa::generate(2048).unwrap();
        let pkey = PKey::from_rsa(rsa).unwrap();

        let mut name = X509Name::builder().unwrap();
        name.append_entry_by_nid(Nid::COMMONNAME, subject_name)
            .unwrap();
        let name = name.build();

        let key_usage = KeyUsage::new().digital_signature().build().unwrap();

        let mut builder = X509::builder().unwrap();
        builder.set_version(2).unwrap();
        builder
            .set_not_before(&Asn1Time::days_from_now(0).unwrap())
            .unwrap();
        builder
            .set_not_after(&Asn1Time::days_from_now(365).unwrap())
            .unwrap();
        builder.set_subject_name(&name).unwrap();
        builder.set_issuer_name(&name).unwrap();
        builder.append_extension(key_usage).unwrap();
        builder.set_pubkey(&pkey).unwrap();
        builder.sign(&pkey, MessageDigest::sha256()).unwrap();
        let cert = builder.build();

        let pkcs12_builder = Pkcs12::builder();
        let pkcs12 = pkcs12_builder
            .build("mypass", subject_name, &pkey, &cert)
            .unwrap();
        let der = pkcs12.to_der().unwrap();

        let pkcs12 = Pkcs12::from_der(&der).unwrap();
        let parsed = pkcs12.parse("mypass").unwrap();

        assert_eq!(
            &*parsed.cert.digest(MessageDigest::sha1()).unwrap(),
            &*cert.digest(MessageDigest::sha1()).unwrap()
        );
        assert!(parsed.pkey.public_eq(&pkey));
    }
}