1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
use crate::io::driver::platform;
use crate::io::{AsyncRead, AsyncWrite, Registration};

use mio::event::Evented;
use std::fmt;
use std::io::{self, Read, Write};
use std::marker::Unpin;
use std::pin::Pin;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::Relaxed;
use std::task::{Context, Poll};

cfg_io_driver! {
    /// Associates an I/O resource that implements the [`std::io::Read`] and/or
    /// [`std::io::Write`] traits with the reactor that drives it.
    ///
    /// `PollEvented` uses [`Registration`] internally to take a type that
    /// implements [`mio::Evented`] as well as [`std::io::Read`] and or
    /// [`std::io::Write`] and associate it with a reactor that will drive it.
    ///
    /// Once the [`mio::Evented`] type is wrapped by `PollEvented`, it can be
    /// used from within the future's execution model. As such, the
    /// `PollEvented` type provides [`AsyncRead`] and [`AsyncWrite`]
    /// implementations using the underlying I/O resource as well as readiness
    /// events provided by the reactor.
    ///
    /// **Note**: While `PollEvented` is `Sync` (if the underlying I/O type is
    /// `Sync`), the caller must ensure that there are at most two tasks that
    /// use a `PollEvented` instance concurrently. One for reading and one for
    /// writing. While violating this requirement is "safe" from a Rust memory
    /// model point of view, it will result in unexpected behavior in the form
    /// of lost notifications and tasks hanging.
    ///
    /// ## Readiness events
    ///
    /// Besides just providing [`AsyncRead`] and [`AsyncWrite`] implementations,
    /// this type also supports access to the underlying readiness event stream.
    /// While similar in function to what [`Registration`] provides, the
    /// semantics are a bit different.
    ///
    /// Two functions are provided to access the readiness events:
    /// [`poll_read_ready`] and [`poll_write_ready`]. These functions return the
    /// current readiness state of the `PollEvented` instance. If
    /// [`poll_read_ready`] indicates read readiness, immediately calling
    /// [`poll_read_ready`] again will also indicate read readiness.
    ///
    /// When the operation is attempted and is unable to succeed due to the I/O
    /// resource not being ready, the caller must call [`clear_read_ready`] or
    /// [`clear_write_ready`]. This clears the readiness state until a new
    /// readiness event is received.
    ///
    /// This allows the caller to implement additional functions. For example,
    /// [`TcpListener`] implements poll_accept by using [`poll_read_ready`] and
    /// [`clear_read_ready`].
    ///
    /// ```rust
    /// use tokio::io::PollEvented;
    ///
    /// use futures::ready;
    /// use mio::Ready;
    /// use mio::net::{TcpStream, TcpListener};
    /// use std::io;
    /// use std::task::{Context, Poll};
    ///
    /// struct MyListener {
    ///     poll_evented: PollEvented<TcpListener>,
    /// }
    ///
    /// impl MyListener {
    ///     pub fn poll_accept(&mut self, cx: &mut Context<'_>) -> Poll<Result<TcpStream, io::Error>> {
    ///         let ready = Ready::readable();
    ///
    ///         ready!(self.poll_evented.poll_read_ready(cx, ready))?;
    ///
    ///         match self.poll_evented.get_ref().accept() {
    ///             Ok((socket, _)) => Poll::Ready(Ok(socket)),
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 self.poll_evented.clear_read_ready(cx, ready)?;
    ///                 Poll::Pending
    ///             }
    ///             Err(e) => Poll::Ready(Err(e)),
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// ## Platform-specific events
    ///
    /// `PollEvented` also allows receiving platform-specific `mio::Ready` events.
    /// These events are included as part of the read readiness event stream. The
    /// write readiness event stream is only for `Ready::writable()` events.
    ///
    /// [`std::io::Read`]: https://doc.rust-lang.org/std/io/trait.Read.html
    /// [`std::io::Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
    /// [`AsyncRead`]: trait@AsyncRead
    /// [`AsyncWrite`]: trait@AsyncWrite
    /// [`mio::Evented`]: https://docs.rs/mio/0.6/mio/trait.Evented.html
    /// [`Registration`]: struct@Registration
    /// [`TcpListener`]: struct@crate::net::TcpListener
    /// [`clear_read_ready`]: #method.clear_read_ready
    /// [`clear_write_ready`]: #method.clear_write_ready
    /// [`poll_read_ready`]: #method.poll_read_ready
    /// [`poll_write_ready`]: #method.poll_write_ready
    pub struct PollEvented<E: Evented> {
        io: Option<E>,
        inner: Inner,
    }
}

struct Inner {
    registration: Registration,

    /// Currently visible read readiness
    read_readiness: AtomicUsize,

    /// Currently visible write readiness
    write_readiness: AtomicUsize,
}

// ===== impl PollEvented =====

macro_rules! poll_ready {
    ($me:expr, $mask:expr, $cache:ident, $take:ident, $poll:expr) => {{
        // Load cached & encoded readiness.
        let mut cached = $me.inner.$cache.load(Relaxed);
        let mask = $mask | platform::hup() | platform::error();

        // See if the current readiness matches any bits.
        let mut ret = mio::Ready::from_usize(cached) & $mask;

        if ret.is_empty() {
            // Readiness does not match, consume the registration's readiness
            // stream. This happens in a loop to ensure that the stream gets
            // drained.
            loop {
                let ready = match $poll? {
                    Poll::Ready(v) => v,
                    Poll::Pending => return Poll::Pending,
                };
                cached |= ready.as_usize();

                // Update the cache store
                $me.inner.$cache.store(cached, Relaxed);

                ret |= ready & mask;

                if !ret.is_empty() {
                    return Poll::Ready(Ok(ret));
                }
            }
        } else {
            // Check what's new with the registration stream. This will not
            // request to be notified
            if let Some(ready) = $me.inner.registration.$take()? {
                cached |= ready.as_usize();
                $me.inner.$cache.store(cached, Relaxed);
            }

            Poll::Ready(Ok(mio::Ready::from_usize(cached)))
        }
    }};
}

impl<E> PollEvented<E>
where
    E: Evented,
{
    /// Creates a new `PollEvented` associated with the default reactor.
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called
    /// from a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Handle::enter`](crate::runtime::Handle::enter) function.
    pub fn new(io: E) -> io::Result<Self> {
        PollEvented::new_with_ready(io, mio::Ready::all())
    }

    /// Creates a new `PollEvented` associated with the default reactor, for specific `mio::Ready`
    /// state. `new_with_ready` should be used over `new` when you need control over the readiness
    /// state, such as when a file descriptor only allows reads. This does not add `hup` or `error`
    /// so if you are interested in those states, you will need to add them to the readiness state
    /// passed to this function.
    ///
    /// An example to listen to read only
    ///
    /// ```rust
    /// ##[cfg(unix)]
    ///     mio::Ready::from_usize(
    ///         mio::Ready::readable().as_usize()
    ///         | mio::unix::UnixReady::error().as_usize()
    ///         | mio::unix::UnixReady::hup().as_usize()
    ///     );
    /// ```
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called
    /// from a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Handle::enter`](crate::runtime::Handle::enter) function.
    pub fn new_with_ready(io: E, ready: mio::Ready) -> io::Result<Self> {
        let registration = Registration::new_with_ready(&io, ready)?;
        Ok(Self {
            io: Some(io),
            inner: Inner {
                registration,
                read_readiness: AtomicUsize::new(0),
                write_readiness: AtomicUsize::new(0),
            },
        })
    }

    /// Returns a shared reference to the underlying I/O object this readiness
    /// stream is wrapping.
    pub fn get_ref(&self) -> &E {
        self.io.as_ref().unwrap()
    }

    /// Returns a mutable reference to the underlying I/O object this readiness
    /// stream is wrapping.
    pub fn get_mut(&mut self) -> &mut E {
        self.io.as_mut().unwrap()
    }

    /// Consumes self, returning the inner I/O object
    ///
    /// This function will deregister the I/O resource from the reactor before
    /// returning. If the deregistration operation fails, an error is returned.
    ///
    /// Note that deregistering does not guarantee that the I/O resource can be
    /// registered with a different reactor. Some I/O resource types can only be
    /// associated with a single reactor instance for their lifetime.
    pub fn into_inner(mut self) -> io::Result<E> {
        let io = self.io.take().unwrap();
        self.inner.registration.deregister(&io)?;
        Ok(io)
    }

    /// Checks the I/O resource's read readiness state.
    ///
    /// The mask argument allows specifying what readiness to notify on. This
    /// can be any value, including platform specific readiness, **except**
    /// `writable`. HUP is always implicitly included on platforms that support
    /// it.
    ///
    /// If the resource is not ready for a read then `Poll::Pending` is returned
    /// and the current task is notified once a new event is received.
    ///
    /// The I/O resource will remain in a read-ready state until readiness is
    /// cleared by calling [`clear_read_ready`].
    ///
    /// [`clear_read_ready`]: #method.clear_read_ready
    ///
    /// # Panics
    ///
    /// This function panics if:
    ///
    /// * `ready` includes writable.
    /// * called from outside of a task context.
    ///
    /// # Warning
    ///
    /// This method may not be called concurrently. It takes `&self` to allow
    /// calling it concurrently with `poll_write_ready`.
    pub fn poll_read_ready(
        &self,
        cx: &mut Context<'_>,
        mask: mio::Ready,
    ) -> Poll<io::Result<mio::Ready>> {
        assert!(!mask.is_writable(), "cannot poll for write readiness");
        poll_ready!(
            self,
            mask,
            read_readiness,
            take_read_ready,
            self.inner.registration.poll_read_ready(cx)
        )
    }

    /// Clears the I/O resource's read readiness state and registers the current
    /// task to be notified once a read readiness event is received.
    ///
    /// After calling this function, `poll_read_ready` will return
    /// `Poll::Pending` until a new read readiness event has been received.
    ///
    /// The `mask` argument specifies the readiness bits to clear. This may not
    /// include `writable` or `hup`.
    ///
    /// # Panics
    ///
    /// This function panics if:
    ///
    /// * `ready` includes writable or HUP
    /// * called from outside of a task context.
    pub fn clear_read_ready(&self, cx: &mut Context<'_>, ready: mio::Ready) -> io::Result<()> {
        // Cannot clear write readiness
        assert!(!ready.is_writable(), "cannot clear write readiness");
        assert!(!platform::is_hup(ready), "cannot clear HUP readiness");

        self.inner
            .read_readiness
            .fetch_and(!ready.as_usize(), Relaxed);

        if self.poll_read_ready(cx, ready)?.is_ready() {
            // Notify the current task
            cx.waker().wake_by_ref();
        }

        Ok(())
    }

    /// Checks the I/O resource's write readiness state.
    ///
    /// This always checks for writable readiness and also checks for HUP
    /// readiness on platforms that support it.
    ///
    /// If the resource is not ready for a write then `Poll::Pending` is
    /// returned and the current task is notified once a new event is received.
    ///
    /// The I/O resource will remain in a write-ready state until readiness is
    /// cleared by calling [`clear_write_ready`].
    ///
    /// [`clear_write_ready`]: #method.clear_write_ready
    ///
    /// # Panics
    ///
    /// This function panics if:
    ///
    /// * `ready` contains bits besides `writable` and `hup`.
    /// * called from outside of a task context.
    ///
    /// # Warning
    ///
    /// This method may not be called concurrently. It takes `&self` to allow
    /// calling it concurrently with `poll_read_ready`.
    pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<mio::Ready>> {
        poll_ready!(
            self,
            mio::Ready::writable(),
            write_readiness,
            take_write_ready,
            self.inner.registration.poll_write_ready(cx)
        )
    }

    /// Resets the I/O resource's write readiness state and registers the current
    /// task to be notified once a write readiness event is received.
    ///
    /// This only clears writable readiness. HUP (on platforms that support HUP)
    /// cannot be cleared as it is a final state.
    ///
    /// After calling this function, `poll_write_ready(Ready::writable())` will
    /// return `NotReady` until a new write readiness event has been received.
    ///
    /// # Panics
    ///
    /// This function will panic if called from outside of a task context.
    pub fn clear_write_ready(&self, cx: &mut Context<'_>) -> io::Result<()> {
        let ready = mio::Ready::writable();

        self.inner
            .write_readiness
            .fetch_and(!ready.as_usize(), Relaxed);

        if self.poll_write_ready(cx)?.is_ready() {
            // Notify the current task
            cx.waker().wake_by_ref();
        }

        Ok(())
    }
}

// ===== Read / Write impls =====

impl<E> AsyncRead for PollEvented<E>
where
    E: Evented + Read + Unpin,
{
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        ready!(self.poll_read_ready(cx, mio::Ready::readable()))?;

        let r = (*self).get_mut().read(buf);

        if is_wouldblock(&r) {
            self.clear_read_ready(cx, mio::Ready::readable())?;
            return Poll::Pending;
        }

        Poll::Ready(r)
    }
}

impl<E> AsyncWrite for PollEvented<E>
where
    E: Evented + Write + Unpin,
{
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        ready!(self.poll_write_ready(cx))?;

        let r = (*self).get_mut().write(buf);

        if is_wouldblock(&r) {
            self.clear_write_ready(cx)?;
            return Poll::Pending;
        }

        Poll::Ready(r)
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        ready!(self.poll_write_ready(cx))?;

        let r = (*self).get_mut().flush();

        if is_wouldblock(&r) {
            self.clear_write_ready(cx)?;
            return Poll::Pending;
        }

        Poll::Ready(r)
    }

    fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(Ok(()))
    }
}

fn is_wouldblock<T>(r: &io::Result<T>) -> bool {
    match *r {
        Ok(_) => false,
        Err(ref e) => e.kind() == io::ErrorKind::WouldBlock,
    }
}

impl<E: Evented + fmt::Debug> fmt::Debug for PollEvented<E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PollEvented").field("io", &self.io).finish()
    }
}

impl<E: Evented> Drop for PollEvented<E> {
    fn drop(&mut self) {
        if let Some(io) = self.io.take() {
            // Ignore errors
            let _ = self.inner.registration.deregister(&io);
        }
    }
}