[−]Struct openssl::bn::BigNum
Dynamically sized large number impelementation
Perform large number mathematics. Create a new BigNum
with new
. Perform standard mathematics on large numbers using
methods from Dref<Target = BigNumRef>
OpenSSL documenation at BN_new
.
Examples
use openssl::bn::BigNum; let little_big = BigNum::from_u32(std::u32::MAX)?; assert_eq!(*&little_big.num_bytes(), 4);
Methods
impl BigNum
[src]
pub fn new() -> Result<BigNum, ErrorStack>
[src]
Creates a new BigNum
with the value 0.
pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack>
[src]
Creates a new BigNum
with the given value.
OpenSSL documentation at BN_set_word
pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack>
[src]
Creates a BigNum
from a decimal string.
OpenSSL documentation at BN_dec2bn
pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack>
[src]
Creates a BigNum
from a hexadecimal string.
OpenSSL documentation at BN_hex2bn
pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 2409
. This prime number is in
the order of magnitude of 2 ^ 768
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1.
OpenSSL documentation at BN_get_rfc2409_prime_768
pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 2409
. This prime number is in
the order of magnitude of 2 ^ 1024
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled Oakly group 2.
OpenSSL documentation at BN_get_rfc2409_prime_1024
pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 1536
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 5.
OpenSSL documentation at BN_get_rfc3526_prime_1536
pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 2048
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 14.
OpenSSL documentation at BN_get_rfc3526_prime_2048
pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 3072
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 15.
OpenSSL documentation at BN_get_rfc3526_prime_3072
pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 4096
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 16.
OpenSSL documentation at BN_get_rfc3526_prime_4096
pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 6144
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 17.
OpenSSL documentation at BN_get_rfc3526_prime_6144
pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack>
[src]
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 8192
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 18.
OpenSSL documentation at BN_get_rfc3526_prime_8192
pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack>
[src]
Creates a new BigNum
from an unsigned, big-endian encoded number of arbitrary length.
OpenSSL documentation at BN_bin2bn
let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap(); assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
Methods from Deref<Target = BigNumRef>
pub fn clear(&mut self)
[src]
Erases the memory used by this BigNum
, resetting its value to 0.
This can be used to destroy sensitive data such as keys when they are no longer needed.
OpenSSL documentation at BN_clear
pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack>
[src]
Adds a u32
to self
.
OpenSSL documentation at BN_add_word
pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack>
[src]
Subtracts a u32
from self
.
OpenSSL documentation at BN_sub_word
pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack>
[src]
Multiplies a u32
by self
.
OpenSSL documentation at BN_mul_word
pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack>
[src]
Divides self
by a u32
, returning the remainder.
OpenSSL documentation at BN_div_word
pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack>
[src]
Returns the result of self
modulo w
.
OpenSSL documentation at BN_mod_word
pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack>
[src]
Places a cryptographically-secure pseudo-random nonnegative
number less than self
in rnd
.
OpenSSL documentation at BN_rand_range
pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack>
[src]
The cryptographically weak counterpart to rand_in_range
.
OpenSSL documentation at BN_pseudo_rand_range
pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack>
[src]
Sets bit n
. Equivalent to self |= (1 << n)
.
When setting a bit outside of self
, it is expanded.
OpenSSL documentation at BN_set_bit
pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack>
[src]
Clears bit n
, setting it to 0. Equivalent to self &= ~(1 << n)
.
When clearing a bit outside of self
, an error is returned.
OpenSSL documentation at BN_clear_bit
pub fn is_bit_set(&self, n: i32) -> bool
[src]
Returns true
if the n
th bit of self
is set to 1, false
otherwise.
OpenSSL documentation at BN_is_bit_set
pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack>
[src]
Truncates self
to the lowest n
bits.
An error occurs if self
is already shorter than n
bits.
OpenSSL documentation at BN_mask_bits
pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack>
[src]
Places a << 1
in self
. Equivalent to self * 2
.
OpenSSL documentation at BN_lshift1
pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack>
[src]
Places a >> 1
in self
. Equivalent to self / 2
.
OpenSSL documentation at BN_rshift1
pub fn checked_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef
) -> Result<(), ErrorStack>
Places a + b
in self
. core::ops::Add
is also implemented for BigNumRef
.
OpenSSL documentation at BN_add
pub fn checked_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef
) -> Result<(), ErrorStack>
Places a - b
in self
. core::ops::Sub
is also implemented for BigNumRef
.
OpenSSL documentation at BN_sub
pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack>
[src]
Places a << n
in self
. Equivalent to a * 2 ^ n
.
OpenSSL documentation at BN_lshift
pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack>
[src]
Places a >> n
in self
. Equivalent to a / 2 ^ n
.
OpenSSL documentation at BN_rshift
pub fn to_owned(&self) -> Result<BigNum, ErrorStack>
[src]
Creates a new BigNum with the same value.
OpenSSL documentation at BN_dup
pub fn set_negative(&mut self, negative: bool)
[src]
Sets the sign of self
. Pass true to set self
to a negative. False sets
self
positive.
pub fn ucmp(&self, oth: &BigNumRef) -> Ordering
[src]
Compare the absolute values of self
and oth
.
OpenSSL documentation at BN_ucmp
Examples
let s = -BigNum::from_u32(8).unwrap(); let o = BigNum::from_u32(8).unwrap(); assert_eq!(s.ucmp(&o), Ordering::Equal);
pub fn is_negative(&self) -> bool
[src]
Returns true
if self
is negative.
pub fn num_bits(&self) -> i32
[src]
Returns the number of significant bits in self
.
OpenSSL documentation at BN_num_bits
pub fn num_bytes(&self) -> i32
[src]
Returns the size of self
in bytes. Implemented natively.
pub fn rand(
&mut self,
bits: i32,
msb: MsbOption,
odd: bool
) -> Result<(), ErrorStack>
[src]
&mut self,
bits: i32,
msb: MsbOption,
odd: bool
) -> Result<(), ErrorStack>
Generates a cryptographically strong pseudo-random BigNum
, placing it in self
.
Parameters
bits
: Length of the number in bits.msb
: The desired properties of the most significant bit. Seeconstants
.odd
: Iftrue
, the generated number will be odd.
Examples
use openssl::bn::{BigNum, MsbOption}; use openssl::error::ErrorStack; fn generate_random() -> Result< BigNum, ErrorStack > { let mut big = BigNum::new()?; // Generates a 128-bit odd random number big.rand(128, MsbOption::MAYBE_ZERO, true); Ok((big)) }
OpenSSL documentation at BN_rand
pub fn pseudo_rand(
&mut self,
bits: i32,
msb: MsbOption,
odd: bool
) -> Result<(), ErrorStack>
[src]
&mut self,
bits: i32,
msb: MsbOption,
odd: bool
) -> Result<(), ErrorStack>
The cryptographically weak counterpart to rand
. Not suitable for key generation.
OpenSSL documentation at BN_psuedo_rand
pub fn generate_prime(
&mut self,
bits: i32,
safe: bool,
add: Option<&BigNumRef>,
rem: Option<&BigNumRef>
) -> Result<(), ErrorStack>
[src]
&mut self,
bits: i32,
safe: bool,
add: Option<&BigNumRef>,
rem: Option<&BigNumRef>
) -> Result<(), ErrorStack>
Generates a prime number, placing it in self
.
Parameters
bits
: The length of the prime in bits (lower bound).safe
: If true, returns a "safe" primep
so that(p-1)/2
is also prime.add
/rem
: Ifadd
is set toSome(add)
,p % add == rem
will hold, wherep
is the generated prime andrem
is1
if not specified (None
).
Examples
use openssl::bn::BigNum; use openssl::error::ErrorStack; fn generate_weak_prime() -> Result< BigNum, ErrorStack > { let mut big = BigNum::new()?; // Generates a 128-bit simple prime number big.generate_prime(128, false, None, None); Ok((big)) }
OpenSSL documentation at BN_generate_prime_ex
pub fn checked_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a * b
in self
.
core::ops::Mul
is also implemented for BigNumRef
.
OpenSSL documentation at BN_mul
pub fn checked_div(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a / b
in self
. The remainder is discarded.
core::ops::Div
is also implemented for BigNumRef
.
OpenSSL documentation at BN_div
pub fn checked_rem(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a % b
in self
.
OpenSSL documentation at BN_div
pub fn div_rem(
&mut self,
rem: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
rem: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a / b
in self
and a % b
in rem
.
OpenSSL documentation at BN_div
pub fn sqr(
&mut self,
a: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a²
in self
.
OpenSSL documentation at BN_sqr
pub fn nnmod(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a mod m
in self
. As opposed to div_rem
the result is non-negative.
OpenSSL documentation at BN_nnmod
pub fn mod_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of (a + b) mod m
in self
.
OpenSSL documentation at BN_mod_add
pub fn mod_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of (a - b) mod m
in self
.
OpenSSL documentation at BN_mod_sub
pub fn mod_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of (a * b) mod m
in self
.
OpenSSL documentation at BN_mod_mul
pub fn mod_sqr(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a² mod m
in self
.
OpenSSL documentation at BN_mod_sqr
pub fn exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a^p
in self
.
OpenSSL documentation at BN_exp
pub fn mod_exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the result of a^p mod m
in self
.
OpenSSL documentation at BN_mod_exp
pub fn mod_inverse(
&mut self,
a: &BigNumRef,
n: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
n: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the inverse of a
modulo n
in self
.
pub fn gcd(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
[src]
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
Places the greatest common denominator of a
and b
in self
.
OpenSSL documentation at BN_gcd
pub fn is_prime(
&self,
checks: i32,
ctx: &mut BigNumContextRef
) -> Result<bool, ErrorStack>
[src]
&self,
checks: i32,
ctx: &mut BigNumContextRef
) -> Result<bool, ErrorStack>
Checks whether self
is prime.
Performs a Miller-Rabin probabilistic primality test with checks
iterations.
OpenSSL documentation at BN_is_prime_ex
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
pub fn is_prime_fasttest(
&self,
checks: i32,
ctx: &mut BigNumContextRef,
do_trial_division: bool
) -> Result<bool, ErrorStack>
[src]
&self,
checks: i32,
ctx: &mut BigNumContextRef,
do_trial_division: bool
) -> Result<bool, ErrorStack>
Checks whether self
is prime with optional trial division.
If do_trial_division
is true
, first performs trial division by a number of small primes.
Then, like is_prime
, performs a Miller-Rabin probabilistic primality test with checks
iterations.
OpenSSL documentation at BN_is_prime_fasttest_ex
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
pub fn to_vec(&self) -> Vec<u8>
[src]
Returns a big-endian byte vector representation of the absolute value of self
.
self
can be recreated by using from_slice
.
let s = -BigNum::from_u32(4543).unwrap(); let r = BigNum::from_u32(4543).unwrap(); let s_vec = s.to_vec(); assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack>
[src]
Returns a decimal string representation of self
.
let s = -BigNum::from_u32(12345).unwrap(); assert_eq!(&**s.to_dec_str().unwrap(), "-12345");
pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack>
[src]
Returns a hexadecimal string representation of self
.
let s = -BigNum::from_u32(0x99ff).unwrap(); assert_eq!(&**s.to_hex_str().unwrap(), "-99FF");
pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack>
[src]
Returns an Asn1Integer
containing the value of self
.
Trait Implementations
impl Send for BigNum
[src]
impl Drop for BigNum
fn drop(&mut self)
impl Eq for BigNum
[src]
impl Sync for BigNum
[src]
impl AsRef<BigNumRef> for BigNum
impl PartialOrd<BigNum> for BigNumRef
[src]
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering>
[src]
#[must_use]
fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<BigNum> for BigNum
[src]
fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering>
[src]
#[must_use]
fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<BigNumRef> for BigNum
[src]
fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering>
[src]
#[must_use]
fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]
fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<BigNum> for BigNumRef
[src]
impl PartialEq<BigNum> for BigNum
[src]
impl PartialEq<BigNumRef> for BigNum
[src]
impl Ord for BigNum
[src]
fn cmp(&self, oth: &BigNum) -> Ordering
[src]
fn max(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
1.21.0[src]
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl DerefMut for BigNum
impl<'a, 'b> Add<&'b BigNum> for &'a BigNumRef
[src]
type Output = BigNum
The resulting type after applying the +
operator.
fn add(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Add<&'b BigNumRef> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the +
operator.
fn add(self, oth: &BigNumRef) -> BigNum
[src]
impl<'a, 'b> Add<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the +
operator.
fn add(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Sub<&'b BigNum> for &'a BigNumRef
[src]
type Output = BigNum
The resulting type after applying the -
operator.
fn sub(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the -
operator.
fn sub(self, oth: &BigNumRef) -> BigNum
[src]
impl<'a, 'b> Sub<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the -
operator.
fn sub(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Mul<&'b BigNum> for &'a BigNumRef
[src]
type Output = BigNum
The resulting type after applying the *
operator.
fn mul(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Mul<&'b BigNumRef> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the *
operator.
fn mul(self, oth: &BigNumRef) -> BigNum
[src]
impl<'a, 'b> Mul<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the *
operator.
fn mul(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Div<&'b BigNum> for &'a BigNumRef
[src]
type Output = BigNum
The resulting type after applying the /
operator.
fn div(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Div<&'b BigNumRef> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the /
operator.
fn div(self, oth: &BigNumRef) -> BigNum
[src]
impl<'a, 'b> Div<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the /
operator.
fn div(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Rem<&'b BigNum> for &'a BigNumRef
[src]
type Output = BigNum
The resulting type after applying the %
operator.
fn rem(self, oth: &BigNum) -> BigNum
[src]
impl<'a, 'b> Rem<&'b BigNumRef> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the %
operator.
fn rem(self, oth: &BigNumRef) -> BigNum
[src]
impl<'a, 'b> Rem<&'b BigNum> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the %
operator.
fn rem(self, oth: &BigNum) -> BigNum
[src]
impl<'a> Neg for &'a BigNum
[src]
impl Neg for BigNum
[src]
impl<'a> Shl<i32> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the <<
operator.
fn shl(self, n: i32) -> BigNum
[src]
impl<'a> Shr<i32> for &'a BigNum
[src]
type Output = BigNum
The resulting type after applying the >>
operator.
fn shr(self, n: i32) -> BigNum
[src]
impl Deref for BigNum
impl Debug for BigNum
[src]
impl Display for BigNum
[src]
impl Borrow<BigNumRef> for BigNum
impl ForeignType for BigNum
Auto Trait Implementations
Blanket Implementations
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,