[][src]Struct rand::distributions::Exp1

pub struct Exp1;

Samples floating-point numbers according to the exponential distribution, with rate parameter λ = 1. This is equivalent to Exp::new(1.0) or sampling with -rng.gen::<f64>().ln(), but faster.

See Exp for the general exponential distribution.

Implemented via the ZIGNOR variant1 of the Ziggurat method. The exact description in the paper was adjusted to use tables for the exponential distribution rather than normal.

Example

use rand::prelude::*;
use rand::distributions::Exp1;

let val: f64 = SmallRng::from_entropy().sample(Exp1);
println!("{}", val);

  1. Jurgen A. Doornik (2005). An Improved Ziggurat Method to Generate Normal Random Samples. Nuffield College, Oxford 

Trait Implementations

impl Distribution<f64> for Exp1[src]

impl Clone for Exp1[src]

impl Copy for Exp1[src]

impl Debug for Exp1[src]

Auto Trait Implementations

impl Send for Exp1

impl Unpin for Exp1

impl Sync for Exp1

impl UnwindSafe for Exp1

impl RefUnwindSafe for Exp1

Blanket Implementations

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]