Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2016 Dtoa Developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ---
//
// The C++ implementation preserved here in comments is licensed as follows:
//
// Tencent is pleased to support the open source community by making RapidJSON
// available.
//
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All
// rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of the License
// at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

use std::ops;

#[derive(Copy, Clone, Debug)]
pub struct DiyFp<F, E> {
    pub f: F,
    pub e: E,
}

impl<F, E> DiyFp<F, E> {
    pub fn new(f: F, e: E) -> Self {
        DiyFp { f: f, e: e }
    }
}

impl ops::Mul for DiyFp<u32, i32> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self {
        let mut tmp = self.f as u64 * rhs.f as u64;
        tmp += 1u64 << 31; // mult_round
        DiyFp {
            f: (tmp >> 32) as u32,
            e: self.e + rhs.e + 32,
        }
    }
}

impl ops::Mul for DiyFp<u64, isize> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self {
        let m32 = 0xFFFFFFFFu64;
        let a = self.f >> 32;
        let b = self.f & m32;
        let c = rhs.f >> 32;
        let d = rhs.f & m32;
        let ac = a * c;
        let bc = b * c;
        let ad = a * d;
        let bd = b * d;
        let mut tmp = (bd >> 32) + (ad & m32) + (bc & m32);
        tmp += 1u64 << 31; // mult_round
        DiyFp {
            f: ac + (ad >> 32) + (bc >> 32) + (tmp >> 32),
            e: self.e + rhs.e + 64,
        }
    }
}

#[doc(hidden)]
#[macro_export]
macro_rules! diyfp {(
    floating_type: $fty:ty,
    significand_type: $sigty:ty,
    exponent_type: $expty:ty,

    diy_significand_size: $diy_significand_size:expr,
    significand_size: $significand_size:expr,
    exponent_bias: $exponent_bias:expr,
    mask_type: $mask_type:ty,
    exponent_mask: $exponent_mask:expr,
    significand_mask: $significand_mask:expr,
    hidden_bit: $hidden_bit:expr,
    cached_powers_f: $cached_powers_f:expr,
    cached_powers_e: $cached_powers_e:expr,
    min_power: $min_power:expr,
) => {

type DiyFp = diyfp::DiyFp<$sigty, $expty>;

impl DiyFp {
    // Preconditions:
    // `d` must have a positive sign and must not be infinity or NaN.
    /*
    explicit DiyFp(double d) {
        union {
            double d;
            uint64_t u64;
        } u = { d };

        int biased_e = static_cast<int>((u.u64 & kDpExponentMask) >> kDpSignificandSize);
        uint64_t significand = (u.u64 & kDpSignificandMask);
        if (biased_e != 0) {
            f = significand + kDpHiddenBit;
            e = biased_e - kDpExponentBias;
        }
        else {
            f = significand;
            e = kDpMinExponent + 1;
        }
    }
    */
    unsafe fn from(d: $fty) -> Self {
        let u: $mask_type = mem::transmute(d);

        let biased_e = ((u & $exponent_mask) >> $significand_size) as $expty;
        let significand = u & $significand_mask;
        if biased_e != 0 {
            DiyFp {
                f: significand + $hidden_bit,
                e: biased_e - $exponent_bias - $significand_size,
            }
        } else {
            DiyFp {
                f: significand,
                e: 1 - $exponent_bias - $significand_size,
            }
        }
    }

    // Normalizes so that the highest bit of the diy significand is 1.
    /*
    DiyFp Normalize() const {
        DiyFp res = *this;
        while (!(res.f & (static_cast<uint64_t>(1) << 63))) {
            res.f <<= 1;
            res.e--;
        }
        return res;
    }
    */
    fn normalize(self) -> DiyFp {
        let mut res = self;
        while (res.f & (1 << ($diy_significand_size - 1))) == 0 {
            res.f <<= 1;
            res.e -= 1;
        }
        res
    }

    // Normalizes so that the highest bit of the diy significand is 1.
    //
    // Precondition:
    // `self.f` must be no more than 2 bits longer than the f64 significand.
    /*
    DiyFp NormalizeBoundary() const {
        DiyFp res = *this;
        while (!(res.f & (kDpHiddenBit << 1))) {
            res.f <<= 1;
            res.e--;
        }
        res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
        res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
        return res;
    }
    */
    fn normalize_boundary(self) -> DiyFp {
        let mut res = self;
        while (res.f & $hidden_bit << 1) == 0 {
            res.f <<= 1;
            res.e -= 1;
        }
        res.f <<= $diy_significand_size - $significand_size - 2;
        res.e -= $diy_significand_size - $significand_size - 2;
        res
    }

    // Normalizes `self - e` and `self + e` where `e` is half of the least
    // significant digit of `self`. The plus is normalized so that the highest
    // bit of the diy significand is 1. The minus is normalized so that it has
    // the same exponent as the plus.
    //
    // Preconditions:
    // `self` must have been returned directly from `DiyFp::from_f64`.
    // `self.f` must not be zero.
    /*
    void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
        DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
        DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
        mi.f <<= mi.e - pl.e;
        mi.e = pl.e;
        *plus = pl;
        *minus = mi;
    }
    */
    fn normalized_boundaries(self) -> (DiyFp, DiyFp) {
        let pl = DiyFp::new((self.f << 1) + 1, self.e - 1).normalize_boundary();
        let mut mi = if self.f == $hidden_bit {
            DiyFp::new((self.f << 2) - 1, self.e - 2)
        } else {
            DiyFp::new((self.f << 1) - 1, self.e - 1)
        };
        mi.f <<= mi.e - pl.e;
        mi.e = pl.e;
        (mi, pl)
    }
}

impl ops::Sub for DiyFp {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        DiyFp {
            f: self.f - rhs.f,
            e: self.e,
        }
    }
}

/*
inline DiyFp GetCachedPower(int e, int* K) {
    //int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
    double dk = (-61 - e) * 0.30102999566398114 + 347;  // dk must be positive, so can do ceiling in positive
    int k = static_cast<int>(dk);
    if (dk - k > 0.0)
        k++;

    unsigned index = static_cast<unsigned>((k >> 3) + 1);
    *K = -(-348 + static_cast<int>(index << 3));    // decimal exponent no need lookup table

    return GetCachedPowerByIndex(index);
}
*/
#[inline]
fn get_cached_power(e: $expty) -> (DiyFp, isize) {
    let dk = (3 - $diy_significand_size - e) as f64 * 0.30102999566398114f64 - ($min_power + 1) as f64;
    let mut k = dk as isize;
    if dk - k as f64 > 0.0 {
        k += 1;
    }

    let index = ((k >> 3) + 1) as usize;
    let k = -($min_power + (index << 3) as isize);

    (DiyFp::new($cached_powers_f[index], $cached_powers_e[index] as $expty), k)
}

}}