Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
//! Allows a future or stream to execute for a maximum amount of time.
//!
//! See [`Timeout`] documentation for more details.
//!
//! [`Timeout`]: struct.Timeout.html

use clock::now;
use Delay;

use futures::{Async, Future, Poll, Stream};

use std::error;
use std::fmt;
use std::time::{Duration, Instant};

/// Allows a `Future` or `Stream` to execute for a limited amount of time.
///
/// If the future or stream completes before the timeout has expired, then
/// `Timeout` returns the completed value. Otherwise, `Timeout` returns an
/// [`Error`].
///
/// # Futures and Streams
///
/// The exact behavor depends on if the inner value is a `Future` or a `Stream`.
/// In the case of a `Future`, `Timeout` will require the future to complete by
/// a fixed deadline. In the case of a `Stream`, `Timeout` will allow each item
/// to take the entire timeout before returning an error.
///
/// In order to set an upper bound on the processing of the *entire* stream,
/// then a timeout should be set on the future that processes the stream. For
/// example:
///
/// ```rust
/// # extern crate futures;
/// # extern crate tokio;
/// // import the `timeout` function, usually this is done
/// // with `use tokio::prelude::*`
/// use tokio::prelude::FutureExt;
/// use futures::Stream;
/// use futures::sync::mpsc;
/// use std::time::Duration;
///
/// # fn main() {
/// let (tx, rx) = mpsc::unbounded();
/// # tx.unbounded_send(()).unwrap();
/// # drop(tx);
///
/// let process = rx.for_each(|item| {
///     // do something with `item`
/// # drop(item);
/// # Ok(())
/// });
///
/// # tokio::runtime::current_thread::block_on_all(
/// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
/// process.timeout(Duration::from_millis(10))
/// # ).unwrap();
/// # }
/// ```
///
/// # Cancelation
///
/// Cancelling a `Timeout` is done by dropping the value. No additional cleanup
/// or other work is required.
///
/// The original future or stream may be obtained by calling [`Timeout::into_inner`]. This
/// consumes the `Timeout`.
///
/// [`Error`]: struct.Error.html
/// [`Timeout::into_inner`]: struct.Timeout.html#method.into_iter
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct Timeout<T> {
    value: T,
    delay: Delay,
}

/// Error returned by `Timeout`.
#[derive(Debug)]
pub struct Error<T>(Kind<T>);

/// Timeout error variants
#[derive(Debug)]
enum Kind<T> {
    /// Inner value returned an error
    Inner(T),

    /// The timeout elapsed.
    Elapsed,

    /// Timer returned an error.
    Timer(::Error),
}

impl<T> Timeout<T> {
    /// Create a new `Timeout` that allows `value` to execute for a duration of
    /// at most `timeout`.
    ///
    /// The exact behavior depends on if `value` is a `Future` or a `Stream`.
    ///
    /// See [type] level documentation for more details.
    ///
    /// [type]: #
    ///
    /// # Examples
    ///
    /// Create a new `Timeout` set to expire in 10 milliseconds.
    ///
    /// ```rust
    /// # extern crate futures;
    /// # extern crate tokio;
    /// use tokio::timer::Timeout;
    /// use futures::Future;
    /// use futures::sync::oneshot;
    /// use std::time::Duration;
    ///
    /// # fn main() {
    /// let (tx, rx) = oneshot::channel();
    /// # tx.send(()).unwrap();
    ///
    /// # tokio::runtime::current_thread::block_on_all(
    /// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
    /// Timeout::new(rx, Duration::from_millis(10))
    /// # ).unwrap();
    /// # }
    /// ```
    pub fn new(value: T, timeout: Duration) -> Timeout<T> {
        let delay = Delay::new_timeout(now() + timeout, timeout);
        Timeout::new_with_delay(value, delay)
    }

    pub(crate) fn new_with_delay(value: T, delay: Delay) -> Timeout<T> {
        Timeout { value, delay }
    }

    /// Gets a reference to the underlying value in this timeout.
    pub fn get_ref(&self) -> &T {
        &self.value
    }

    /// Gets a mutable reference to the underlying value in this timeout.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.value
    }

    /// Consumes this timeout, returning the underlying value.
    pub fn into_inner(self) -> T {
        self.value
    }
}

impl<T: Future> Timeout<T> {
    /// Create a new `Timeout` that completes when `future` completes or when
    /// `deadline` is reached.
    ///
    /// This function differs from `new` in that:
    ///
    /// * It only accepts `Future` arguments.
    /// * It sets an explicit `Instant` at which the timeout expires.
    pub fn new_at(future: T, deadline: Instant) -> Timeout<T> {
        let delay = Delay::new(deadline);

        Timeout {
            value: future,
            delay,
        }
    }
}

impl<T> Future for Timeout<T>
where
    T: Future,
{
    type Item = T::Item;
    type Error = Error<T::Error>;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        // First, try polling the future
        match self.value.poll() {
            Ok(Async::Ready(v)) => return Ok(Async::Ready(v)),
            Ok(Async::NotReady) => {}
            Err(e) => return Err(Error::inner(e)),
        }

        // Now check the timer
        match self.delay.poll() {
            Ok(Async::NotReady) => Ok(Async::NotReady),
            Ok(Async::Ready(_)) => Err(Error::elapsed()),
            Err(e) => Err(Error::timer(e)),
        }
    }
}

impl<T> Stream for Timeout<T>
where
    T: Stream,
{
    type Item = T::Item;
    type Error = Error<T::Error>;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        // First, try polling the future
        match self.value.poll() {
            Ok(Async::Ready(v)) => {
                if v.is_some() {
                    self.delay.reset_timeout();
                }
                return Ok(Async::Ready(v));
            }
            Ok(Async::NotReady) => {}
            Err(e) => return Err(Error::inner(e)),
        }

        // Now check the timer
        match self.delay.poll() {
            Ok(Async::NotReady) => Ok(Async::NotReady),
            Ok(Async::Ready(_)) => {
                self.delay.reset_timeout();
                Err(Error::elapsed())
            }
            Err(e) => Err(Error::timer(e)),
        }
    }
}

// ===== impl Error =====

impl<T> Error<T> {
    /// Create a new `Error` representing the inner value completing with `Err`.
    pub fn inner(err: T) -> Error<T> {
        Error(Kind::Inner(err))
    }

    /// Returns `true` if the error was caused by the inner value completing
    /// with `Err`.
    pub fn is_inner(&self) -> bool {
        match self.0 {
            Kind::Inner(_) => true,
            _ => false,
        }
    }

    /// Consumes `self`, returning the inner future error.
    pub fn into_inner(self) -> Option<T> {
        match self.0 {
            Kind::Inner(err) => Some(err),
            _ => None,
        }
    }

    /// Create a new `Error` representing the inner value not completing before
    /// the deadline is reached.
    pub fn elapsed() -> Error<T> {
        Error(Kind::Elapsed)
    }

    /// Returns `true` if the error was caused by the inner value not completing
    /// before the deadline is reached.
    pub fn is_elapsed(&self) -> bool {
        match self.0 {
            Kind::Elapsed => true,
            _ => false,
        }
    }

    /// Creates a new `Error` representing an error encountered by the timer
    /// implementation
    pub fn timer(err: ::Error) -> Error<T> {
        Error(Kind::Timer(err))
    }

    /// Returns `true` if the error was caused by the timer.
    pub fn is_timer(&self) -> bool {
        match self.0 {
            Kind::Timer(_) => true,
            _ => false,
        }
    }

    /// Consumes `self`, returning the error raised by the timer implementation.
    pub fn into_timer(self) -> Option<::Error> {
        match self.0 {
            Kind::Timer(err) => Some(err),
            _ => None,
        }
    }
}

impl<T: error::Error> error::Error for Error<T> {
    fn description(&self) -> &str {
        use self::Kind::*;

        match self.0 {
            Inner(ref e) => e.description(),
            Elapsed => "deadline has elapsed",
            Timer(ref e) => e.description(),
        }
    }
}

impl<T: fmt::Display> fmt::Display for Error<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        use self::Kind::*;

        match self.0 {
            Inner(ref e) => e.fmt(fmt),
            Elapsed => "deadline has elapsed".fmt(fmt),
            Timer(ref e) => e.fmt(fmt),
        }
    }
}