Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The binomial distribution.

use Rng;
use distributions::{Distribution, Bernoulli, Cauchy};
use distributions::utils::log_gamma;

/// The binomial distribution `Binomial(n, p)`.
///
/// This distribution has density function:
/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Binomial, Distribution};
///
/// let bin = Binomial::new(20, 0.3);
/// let v = bin.sample(&mut rand::thread_rng());
/// println!("{} is from a binomial distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Binomial {
    /// Number of trials.
    n: u64,
    /// Probability of success.
    p: f64,
}

impl Binomial {
    /// Construct a new `Binomial` with the given shape parameters `n` (number
    /// of trials) and `p` (probability of success).
    ///
    /// Panics if `p < 0` or `p > 1`.
    pub fn new(n: u64, p: f64) -> Binomial {
        assert!(p >= 0.0, "Binomial::new called with p < 0");
        assert!(p <= 1.0, "Binomial::new called with p > 1");
        Binomial { n, p }
    }
}

impl Distribution<u64> for Binomial {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
        // Handle these values directly.
        if self.p == 0.0 {
            return 0;
        } else if self.p == 1.0 {
            return self.n;
        }
        
        // For low n, it is faster to sample directly. For both methods,
        // performance is independent of p. On Intel Haswell CPU this method
        // appears to be faster for approx n < 300.
        if self.n < 300 {
            let mut result = 0;
            let d = Bernoulli::new(self.p);
            for _ in 0 .. self.n {
                result += rng.sample(d) as u32;
            }
            return result as u64;
        }
        
        // binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k
        // switch p so that it is less than 0.5 - this allows for lower expected values
        // we will just invert the result at the end
        let p = if self.p <= 0.5 {
            self.p
        } else {
            1.0 - self.p
        };

        // prepare some cached values
        let float_n = self.n as f64;
        let ln_fact_n = log_gamma(float_n + 1.0);
        let pc = 1.0 - p;
        let log_p = p.ln();
        let log_pc = pc.ln();
        let expected = self.n as f64 * p;
        let sq = (expected * (2.0 * pc)).sqrt();

        let mut lresult;

        // we use the Cauchy distribution as the comparison distribution
        // f(x) ~ 1/(1+x^2)
        let cauchy = Cauchy::new(0.0, 1.0);
        loop {
            let mut comp_dev: f64;
            loop {
                // draw from the Cauchy distribution
                comp_dev = rng.sample(cauchy);
                // shift the peak of the comparison ditribution
                lresult = expected + sq * comp_dev;
                // repeat the drawing until we are in the range of possible values
                if lresult >= 0.0 && lresult < float_n + 1.0 {
                    break;
                }
            }

            // the result should be discrete
            lresult = lresult.floor();

            let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) -
                log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc;
            // this is the binomial probability divided by the comparison probability
            // we will generate a uniform random value and if it is larger than this,
            // we interpret it as a value falling out of the distribution and repeat
            let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev));

            if comparison_coeff >= rng.gen() {
                break;
            }
        }

        // invert the result for p < 0.5
        if p != self.p {
            self.n - lresult as u64
        } else {
            lresult as u64
        }
    }
}

#[cfg(test)]
mod test {
    use Rng;
    use distributions::Distribution;
    use super::Binomial;

    fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
        let binomial = Binomial::new(n, p);

        let expected_mean = n as f64 * p;
        let expected_variance = n as f64 * p * (1.0 - p);

        let mut results = [0.0; 1000];
        for i in results.iter_mut() { *i = binomial.sample(rng) as f64; }

        let mean = results.iter().sum::<f64>() / results.len() as f64;
        assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);

        let variance =
            results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>()
            / results.len() as f64;
        assert!((variance - expected_variance).abs() < expected_variance / 10.0);
    }

    #[test]
    fn test_binomial() {
        let mut rng = ::test::rng(351);
        test_binomial_mean_and_variance(150, 0.1, &mut rng);
        test_binomial_mean_and_variance(70, 0.6, &mut rng);
        test_binomial_mean_and_variance(40, 0.5, &mut rng);
        test_binomial_mean_and_variance(20, 0.7, &mut rng);
        test_binomial_mean_and_variance(20, 0.5, &mut rng);
    }

    #[test]
    fn test_binomial_end_points() {
        let mut rng = ::test::rng(352);
        assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0);
        assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20);
    }

    #[test]
    #[should_panic]
    fn test_binomial_invalid_lambda_neg() {
        Binomial::new(20, -10.0);
    }
}