Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
//! An asynchronous `Mutex`-like type.
//!
//! This module provides [`Lock`], a type that acts similarly to an asynchronous `Mutex`, with one
//! major difference: the [`LockGuard`] returned by `poll_lock` is not tied to the lifetime of the
//! `Mutex`. This enables you to acquire a lock, and then pass that guard into a future, and then
//! release it at some later point in time.
//!
//! This allows you to do something along the lines of:
//!
//! ```rust,no_run
//! # #[macro_use]
//! # extern crate futures;
//! # extern crate tokio;
//! # use futures::{future, Poll, Async, Future, Stream};
//! use tokio::sync::lock::{Lock, LockGuard};
//! struct MyType<S> {
//!     lock: Lock<S>,
//! }
//!
//! impl<S> Future for MyType<S>
//!   where S: Stream<Item = u32> + Send + 'static
//! {
//!     type Item = ();
//!     type Error = ();
//!
//!     fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
//!         match self.lock.poll_lock() {
//!             Async::Ready(mut guard) => {
//!                 tokio::spawn(future::poll_fn(move || {
//!                     let item = try_ready!(guard.poll().map_err(|_| ()));
//!                     println!("item = {:?}", item);
//!                     Ok(().into())
//!                 }));
//!                 Ok(().into())
//!             },
//!             Async::NotReady => Ok(Async::NotReady)
//!         }
//!     }
//! }
//! # fn main() {}
//! ```
//!
//!   [`Lock`]: struct.Lock.html
//!   [`LockGuard`]: struct.LockGuard.html

use futures::Async;
use semaphore;
use std::cell::UnsafeCell;
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;

/// An asynchronous mutual exclusion primitive useful for protecting shared data
///
/// Each mutex has a type parameter (`T`) which represents the data that it is protecting. The data
/// can only be accessed through the RAII guards returned from `poll_lock`, which guarantees that
/// the data is only ever accessed when the mutex is locked.
#[derive(Debug)]
pub struct Lock<T> {
    inner: Arc<State<T>>,
    permit: semaphore::Permit,
}

/// A handle to a held `Lock`.
///
/// As long as you have this guard, you have exclusive access to the underlying `T`. The guard
/// internally keeps a reference-couned pointer to the original `Lock`, so even if the lock goes
/// away, the guard remains valid.
///
/// The lock is automatically released whenever the guard is dropped, at which point `poll_lock`
/// will succeed yet again.
#[derive(Debug)]
pub struct LockGuard<T>(Lock<T>);

// As long as T: Send, it's fine to send and share Lock<T> between threads.
// If T was not Send, sending and sharing a Lock<T> would be bad, since you can access T through
// Lock<T>.
unsafe impl<T> Send for Lock<T> where T: Send {}
unsafe impl<T> Sync for Lock<T> where T: Send {}
unsafe impl<T> Sync for LockGuard<T> where T: Send + Sync {}

#[derive(Debug)]
struct State<T> {
    c: UnsafeCell<T>,
    s: semaphore::Semaphore,
}

#[test]
fn bounds() {
    fn check<T: Send>() {}
    check::<LockGuard<u32>>();
}

impl<T> Lock<T> {
    /// Creates a new lock in an unlocked state ready for use.
    pub fn new(t: T) -> Self {
        Self {
            inner: Arc::new(State {
                c: UnsafeCell::new(t),
                s: semaphore::Semaphore::new(1),
            }),
            permit: semaphore::Permit::new(),
        }
    }

    /// Try to acquire the lock.
    ///
    /// If the lock is already held, the current task is notified when it is released.
    pub fn poll_lock(&mut self) -> Async<LockGuard<T>> {
        if let Async::NotReady = self.permit.poll_acquire(&self.inner.s).unwrap_or_else(|_| {
            // The semaphore was closed. but, we never explicitly close it, and we have a
            // handle to it through the Arc, which means that this can never happen.
            unreachable!()
        }) {
            return Async::NotReady;
        }

        // We want to move the acquired permit into the guard,
        // and leave an unacquired one in self.
        let acquired = Self {
            inner: self.inner.clone(),
            permit: ::std::mem::replace(&mut self.permit, semaphore::Permit::new()),
        };
        Async::Ready(LockGuard(acquired))
    }
}

impl<T> Drop for LockGuard<T> {
    fn drop(&mut self) {
        if self.0.permit.is_acquired() {
            self.0.permit.release(&self.0.inner.s);
        } else if ::std::thread::panicking() {
            // A guard _should_ always hold its permit, but if the thread is already panicking,
            // we don't want to generate a panic-while-panicing, since that's just unhelpful!
        } else {
            unreachable!("Permit not held when LockGuard was dropped")
        }
    }
}

impl<T> From<T> for Lock<T> {
    fn from(s: T) -> Self {
        Self::new(s)
    }
}

impl<T> Clone for Lock<T> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
            permit: semaphore::Permit::new(),
        }
    }
}

impl<T> Default for Lock<T>
where
    T: Default,
{
    fn default() -> Self {
        Self::new(T::default())
    }
}

impl<T> Deref for LockGuard<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        assert!(self.0.permit.is_acquired());
        unsafe { &*self.0.inner.c.get() }
    }
}

impl<T> DerefMut for LockGuard<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        assert!(self.0.permit.is_acquired());
        unsafe { &mut *self.0.inner.c.get() }
    }
}

impl<T: fmt::Display> fmt::Display for LockGuard<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}