Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use config::MAX_WORKERS;
use worker;

use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed};
use std::{fmt, usize};

/// Lock-free stack of sleeping workers.
///
/// This is implemented as a Treiber stack and references to nodes are
/// `usize` values, indexing the entry in the `[worker::Entry]` array stored by
/// `Pool`. Each `Entry` instance maintains a `pushed` bit in its state. This
/// bit tracks if the entry is already pushed onto the stack or not. A single
/// entry can only be stored on the stack a single time.
///
/// By using indexes instead of pointers, that allows a much greater amount of
/// data to be used for the ABA guard (see correctness section of wikipedia
/// page).
///
/// Treiber stack: https://en.wikipedia.org/wiki/Treiber_Stack
#[derive(Debug)]
pub(crate) struct Stack {
    state: AtomicUsize,
}

/// State related to the stack of sleeping workers.
///
/// - Parked head     16 bits
/// - Sequence        remaining
///
/// The parked head value has a couple of special values:
///
/// - EMPTY: No sleepers
/// - TERMINATED: Don't spawn more threads
#[derive(Eq, PartialEq, Clone, Copy)]
pub struct State(usize);

/// Extracts the head of the worker stack from the scheduler state
///
/// The 16 relates to the value of MAX_WORKERS
const STACK_MASK: usize = ((1 << 16) - 1);

/// Used to mark the stack as empty
pub(crate) const EMPTY: usize = MAX_WORKERS;

/// Used to mark the stack as terminated
pub(crate) const TERMINATED: usize = EMPTY + 1;

/// How many bits the Treiber ABA guard is offset by
const ABA_GUARD_SHIFT: usize = 16;

#[cfg(target_pointer_width = "64")]
const ABA_GUARD_MASK: usize = (1 << (64 - ABA_GUARD_SHIFT)) - 1;

#[cfg(target_pointer_width = "32")]
const ABA_GUARD_MASK: usize = (1 << (32 - ABA_GUARD_SHIFT)) - 1;

// ===== impl Stack =====

impl Stack {
    /// Create a new `Stack` representing the empty state.
    pub fn new() -> Stack {
        let state = AtomicUsize::new(State::new().into());
        Stack { state }
    }

    /// Push a worker onto the stack
    ///
    /// # Return
    ///
    /// Returns `Ok` on success.
    ///
    /// Returns `Err` if the pool has transitioned to the `TERMINATED` state.
    /// When terminated, pushing new entries is no longer permitted.
    pub fn push(&self, entries: &[worker::Entry], idx: usize) -> Result<(), ()> {
        let mut state: State = self.state.load(Acquire).into();

        debug_assert!(worker::State::from(entries[idx].state.load(Relaxed)).is_pushed());

        loop {
            let mut next = state;

            let head = state.head();

            if head == TERMINATED {
                // The pool is terminated, cannot push the sleeper.
                return Err(());
            }

            entries[idx].set_next_sleeper(head);
            next.set_head(idx);

            let actual = self
                .state
                .compare_and_swap(state.into(), next.into(), AcqRel)
                .into();

            if state == actual {
                return Ok(());
            }

            state = actual;
        }
    }

    /// Pop a worker off the stack.
    ///
    /// If `terminate` is set and the stack is empty when this function is
    /// called, the state of the stack is transitioned to "terminated". At this
    /// point, no further workers can be pushed onto the stack.
    ///
    /// # Return
    ///
    /// Returns the index of the popped worker and the worker's observed state.
    ///
    /// `None` if the stack is empty.
    pub fn pop(
        &self,
        entries: &[worker::Entry],
        max_lifecycle: worker::Lifecycle,
        terminate: bool,
    ) -> Option<(usize, worker::State)> {
        // Figure out the empty value
        let terminal = match terminate {
            true => TERMINATED,
            false => EMPTY,
        };

        // If terminating, the max lifecycle *must* be `Signaled`, which is the
        // highest lifecycle. By passing the greatest possible lifecycle value,
        // no entries are skipped by this function.
        //
        // TODO: It would be better to terminate in a separate function that
        // atomically takes all values and transitions to a terminated state.
        debug_assert!(!terminate || max_lifecycle == worker::Lifecycle::Signaled);

        let mut state: State = self.state.load(Acquire).into();

        loop {
            let head = state.head();

            if head == EMPTY {
                let mut next = state;
                next.set_head(terminal);

                if next == state {
                    debug_assert!(terminal == EMPTY);
                    return None;
                }

                let actual = self
                    .state
                    .compare_and_swap(state.into(), next.into(), AcqRel)
                    .into();

                if actual != state {
                    state = actual;
                    continue;
                }

                return None;
            } else if head == TERMINATED {
                return None;
            }

            debug_assert!(head < MAX_WORKERS);

            let mut next = state;

            let next_head = entries[head].next_sleeper();

            // TERMINATED can never be set as the "next pointer" on a worker.
            debug_assert!(next_head != TERMINATED);

            if next_head == EMPTY {
                next.set_head(terminal);
            } else {
                next.set_head(next_head);
            }

            let actual = self
                .state
                .compare_and_swap(state.into(), next.into(), AcqRel)
                .into();

            if actual == state {
                // Release ordering is needed to ensure that unsetting the
                // `pushed` flag happens after popping the sleeper from the
                // stack.
                //
                // Acquire ordering is required to acquire any memory associated
                // with transitioning the worker's lifecycle.
                let state = entries[head].fetch_unset_pushed(AcqRel);

                if state.lifecycle() >= max_lifecycle {
                    // If the worker has already been notified, then it is
                    // warming up to do more work. In this case, try to pop
                    // another thread that might be in a relaxed state.
                    continue;
                }

                return Some((head, state));
            }

            state = actual;
        }
    }
}

// ===== impl State =====

impl State {
    #[inline]
    fn new() -> State {
        State(EMPTY)
    }

    #[inline]
    fn head(&self) -> usize {
        self.0 & STACK_MASK
    }

    #[inline]
    fn set_head(&mut self, val: usize) {
        // The ABA guard protects against the ABA problem w/ Treiber stacks
        let aba_guard = ((self.0 >> ABA_GUARD_SHIFT) + 1) & ABA_GUARD_MASK;

        self.0 = (aba_guard << ABA_GUARD_SHIFT) | val;
    }
}

impl From<usize> for State {
    fn from(src: usize) -> Self {
        State(src)
    }
}

impl From<State> for usize {
    fn from(src: State) -> Self {
        src.0
    }
}

impl fmt::Debug for State {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        let head = self.head();

        let mut fmt = fmt.debug_struct("stack::State");

        if head < MAX_WORKERS {
            fmt.field("head", &head);
        } else if head == EMPTY {
            fmt.field("head", &"EMPTY");
        } else if head == TERMINATED {
            fmt.field("head", &"TERMINATED");
        }

        fmt.finish()
    }
}