Files
adler32
backtrace
backtrace_sys
base64
bigtable
bitflags
byteorder
bytes
cfg_if
cookie
cookie_store
crc32fast
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
curl
curl_sys
dtoa
either
encoding_rs
error_chain
failure
failure_derive
flate2
fnv
foreign_types
foreign_types_shared
futures
futures_cpupool
goauth
h2
http
http_body
httparse
hyper
hyper_tls
idna
indexmap
iovec
itoa
lazy_static
libc
libz_sys
lock_api
log
matches
maybe_uninit
memoffset
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_cpus
num_traits
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
proc_macro2
protobuf
protobuf_json
publicsuffix
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
reqwest
rustc_demangle
rustc_serialize
ryu
scopeguard
serde
serde_codegen_internals
serde_derive
serde_json
serde_urlencoded
slab
smallvec
smpl_jwt
socket2
string
syn
synom
synstructure
time
tokio
tokio_buf
tokio_current_thread
tokio_executor
tokio_io
tokio_reactor
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
try_from
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
uuid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//! A concurrent, lock-free, FIFO list.

use super::block::{self, Block};

use loom::{
    self,
    sync::atomic::{AtomicPtr, AtomicUsize},
};

use std::fmt;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release};

/// List queue transmit handle
pub(crate) struct Tx<T> {
    /// Tail in the `Block` mpmc list.
    block_tail: AtomicPtr<Block<T>>,

    /// Position to push the next message. This reference a block and offset
    /// into the block.
    tail_position: AtomicUsize,
}

/// List queue receive handle
pub(crate) struct Rx<T> {
    /// Pointer to the block being processed
    head: NonNull<Block<T>>,

    /// Next slot index to process
    index: usize,

    /// Pointer to the next block pending release
    free_head: NonNull<Block<T>>,
}

pub(crate) fn channel<T>() -> (Tx<T>, Rx<T>) {
    // Create the initial block shared between the tx and rx halves.
    let initial_block = Box::new(Block::new(0));
    let initial_block_ptr = Box::into_raw(initial_block);

    let tx = Tx {
        block_tail: AtomicPtr::new(initial_block_ptr),
        tail_position: AtomicUsize::new(0),
    };

    let head = NonNull::new(initial_block_ptr).unwrap();

    let rx = Rx {
        head,
        index: 0,
        free_head: head,
    };

    (tx, rx)
}

impl<T> Tx<T> {
    /// Push a value into the list.
    pub(crate) fn push(&self, value: T) {
        // First, claim a slot for the value. `Acquire` is used here to
        // synchronize with the `fetch_add` in `reclaim_blocks`.
        let slot_index = self.tail_position.fetch_add(1, Acquire);

        // Load the current block and write the value
        let block = self.find_block(slot_index);

        unsafe {
            // Write the value to the block
            block.as_ref().write(slot_index, value);
        }
    }

    /// Close the send half of the list
    ///
    /// Similar process as pushing a value, but instead of writing the value &
    /// setting the ready flag, the TX_CLOSED flag is set on the block.
    pub(crate) fn close(&self) {
        // First, claim a slot for the value. This is the last slot that will be
        // claimed.
        let slot_index = self.tail_position.fetch_add(1, Acquire);

        let block = self.find_block(slot_index);

        unsafe { block.as_ref().tx_close() }
    }

    fn find_block(&self, slot_index: usize) -> NonNull<Block<T>> {
        // The start index of the block that contains `index`.
        let start_index = block::start_index(slot_index);

        // The index offset into the block
        let offset = block::offset(slot_index);

        // Load the current head of the block
        let mut block_ptr = self.block_tail.load(Acquire);

        let block = unsafe { &*block_ptr };

        // Calculate the distance between the tail ptr and the target block
        let distance = block.distance(start_index);

        // Decide if this call to `find_block` should attempt to update the
        // `block_tail` pointer.
        //
        // Updating `block_tail` is not always performed in order to reduce
        // contention.
        //
        // When set, as the routine walks the linked list, it attempts to update
        // `block_tail`. If the update cannot be performed, `try_updating_tail`
        // is unset.
        let mut try_updating_tail = distance > offset;

        // Walk the linked list of blocks until the block with `start_index` is
        // found.
        loop {
            let block = unsafe { &(*block_ptr) };

            if block.is_at_index(start_index) {
                return unsafe { NonNull::new_unchecked(block_ptr) };
            }

            let next_block = block
                .load_next(Acquire)
                // There is no allocated next block, grow the linked list.
                .unwrap_or_else(|| block.grow());

            // If the block is **not** final, then the tail pointer cannot be
            // advanced any more.
            try_updating_tail &= block.is_final();

            if try_updating_tail {
                // Advancing `block_tail` must happen when walking the linked
                // list. `block_tail` may not advance passed any blocks that are
                // not "final". At the point a block is finalized, it is unknown
                // if there are any prior blocks that are unfinalized, which
                // makes it impossible to advance `block_tail`.
                //
                // While walking the linked list, `block_tail` can be advanced
                // as long as finalized blocks are traversed.
                //
                // Release ordering is used to ensure that any subsequent reads
                // are able to see the memory pointed to by `block_tail`.
                //
                // Acquire is not needed as any "actual" value is not accessed.
                // At this point, the linked list is walked to acquire blocks.
                let actual =
                    self.block_tail
                        .compare_and_swap(block_ptr, next_block.as_ptr(), Release);

                if actual == block_ptr {
                    // Synchronize with any senders
                    let tail_position = self.tail_position.fetch_add(0, Release);

                    unsafe {
                        block.tx_release(tail_position);
                    }
                } else {
                    // A concurrent sender is also working on advancing
                    // `block_tail` and this thread is falling behind.
                    //
                    // Stop trying to advance the tail pointer
                    try_updating_tail = false;
                }
            }

            block_ptr = next_block.as_ptr();

            loom::yield_now();
        }
    }

    pub(crate) unsafe fn reclaim_block(&self, mut block: NonNull<Block<T>>) {
        debug!("+ reclaim_block({:p})", block);
        // The block has been removed from the linked list and ownership
        // is reclaimed.
        //
        // Before dropping the block, see if it can be reused by
        // inserting it back at the end of the linked list.
        //
        // First, reset the data
        block.as_mut().reclaim();

        let mut reused = false;

        // Attempt to insert the block at the end
        //
        // Walk at most three times
        //
        let curr_ptr = self.block_tail.load(Acquire);

        // The pointer can never be null
        debug_assert!(!curr_ptr.is_null());

        let mut curr = NonNull::new_unchecked(curr_ptr);

        // TODO: Unify this logic with Block::grow
        for _ in 0..3 {
            match curr.as_ref().try_push(&mut block, AcqRel) {
                Ok(_) => {
                    reused = true;
                    break;
                }
                Err(next) => {
                    curr = next;
                }
            }
        }

        if !reused {
            debug!(" + block freed {:p}", block);
            let _ = Box::from_raw(block.as_ptr());
        }
    }
}

impl<T> fmt::Debug for Tx<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Tx")
            .field("block_tail", &self.block_tail.load(Relaxed))
            .field("tail_position", &self.tail_position.load(Relaxed))
            .finish()
    }
}

impl<T> Rx<T> {
    /// Pop the next value off the queue
    pub(crate) fn pop(&mut self, tx: &Tx<T>) -> Option<block::Read<T>> {
        // Advance `head`, if needed
        if !self.try_advancing_head() {
            debug!("+ !self.try_advancing_head() -> false");
            return None;
        }

        self.reclaim_blocks(tx);

        unsafe {
            let block = self.head.as_ref();

            let ret = block.read(self.index);

            if let Some(block::Read::Value(..)) = ret {
                self.index = self.index.wrapping_add(1);
            }

            ret
        }
    }

    /// Try advancing the block pointer to the block referenced by `self.index`.
    ///
    /// Returns `true` if successful, `false` if there is no next block to load.
    fn try_advancing_head(&mut self) -> bool {
        let block_index = block::start_index(self.index);

        loop {
            let next_block = {
                let block = unsafe { self.head.as_ref() };

                if block.is_at_index(block_index) {
                    return true;
                }

                block.load_next(Acquire)
            };

            let next_block = match next_block {
                Some(next_block) => next_block,
                None => {
                    return false;
                }
            };

            self.head = next_block;

            loom::yield_now();
        }
    }

    fn reclaim_blocks(&mut self, tx: &Tx<T>) {
        debug!("+ reclaim_blocks()");

        while self.free_head != self.head {
            unsafe {
                // Get a handle to the block that will be freed and update
                // `free_head` to point to the next block.
                let block = self.free_head;

                let observed_tail_position = block.as_ref().observed_tail_position();

                let required_index = match observed_tail_position {
                    Some(i) => i,
                    None => return,
                };

                if required_index > self.index {
                    return;
                }

                // We may read the next pointer with `Relaxed` ordering as it is
                // guaranteed that the `reclaim_blocks` routine trails the `recv`
                // routine. Any memory accessed by `reclaim_blocks` has already
                // been acquired by `recv`.
                let next_block = block.as_ref().load_next(Relaxed);

                // Update the free list head
                self.free_head = next_block.unwrap();

                // Push the emptied block onto the back of the queue, making it
                // available to senders.
                tx.reclaim_block(block);
            }

            loom::yield_now();
        }
    }

    /// Effectively `Drop` all the blocks. Should only be called once, when
    /// the list is dropping.
    pub(super) unsafe fn free_blocks(&mut self) {
        debug!("+ free_blocks()");
        debug_assert_ne!(self.free_head, NonNull::dangling());

        let mut cur = Some(self.free_head);

        #[cfg(debug_assertions)]
        {
            // to trigger the debug assert above so as to catch that we
            // don't call `free_blocks` more than once.
            self.free_head = NonNull::dangling();
            self.head = NonNull::dangling();
        }

        while let Some(block) = cur {
            cur = block.as_ref().load_next(Relaxed);
            debug!(" + free: block = {:p}", block);
            drop(Box::from_raw(block.as_ptr()));
        }
    }
}

impl<T> fmt::Debug for Rx<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Rx")
            .field("head", &self.head)
            .field("index", &self.index)
            .field("free_head", &self.free_head)
            .finish()
    }
}